Publications by authors named "Elkhartoufi N"

Congenital hydrocephalus is a common condition caused by the accumulation of cerebrospinal fluid in the ventricular system. Four major genes are currently known to be causally involved in hydrocephalus, either isolated or as a common clinical feature: L1CAM, AP1S2, MPDZ and CCDC88C. Here, we report 3 cases from 2 families with congenital hydrocephalus due to bi-allelic variations in CRB2, a gene previously reported to cause nephrotic syndrome, variably associated with hydrocephalus.

View Article and Find Full Text PDF

Hydrolethalus syndrome (HLS) is a rare lethal fetal malformation disorder related to ciliogenesis disruption. This condition is more frequent in Finland where a founder missense variant in the HYLS1 gene was identified. No other HYLS1 variant has hitherto been implicated in HLS.

View Article and Find Full Text PDF
Article Synopsis
  • Megacystis-microcolon-intestinal-hypoperistalsis syndrome (MMIHS) is a rare genetic disorder causing severe abdominal swelling, a small colon, and reduced movement in the intestines, often linked to mutations in the ACTG2 gene.
  • Recent findings have also identified additional mutations in other genes such as MYH11, MYLK, and a potential new gene PDCL3 that may be involved in the condition.
  • Research on five patients revealed multiple genetic variants, including a complete absence of PDCL3 expression in affected individuals, suggesting it plays an important role in the disorder due to its involvement in smooth muscle contractility.
View Article and Find Full Text PDF

Ciliopathies comprise a group of clinically heterogeneous and overlapping disorders with a wide spectrum of phenotypes ranging from prenatal lethality to adult-onset disorders. Pathogenic variants in more than 100 ciliary protein-encoding genes have been described, most notably those involved in intraflagellar transport (IFT) which comprises two protein complexes, responsible for retrograde (IFT-A) and anterograde transport (IFT-B). Here we describe a fetus with an unclassified severe ciliopathy phenotype including short ribs, polydactyly, bilateral renal agenesis, and imperforate anus, with compound heterozygosity for c.

View Article and Find Full Text PDF

Mutations in CPLANE1 (previously known as C5orf42) cause Oral-Facial-Digital Syndrome type VI (OFD6) as well as milder Joubert syndrome (JS) phenotypes. Seven new cases from five unrelated families diagnosed with pure OFD6 were systematically examined. Based on the clinical manifestations of these patients and those described in the literature, we revised the diagnostic features of OFD6 and include the seven most common characteristics: 1) molar tooth sign, 2) tongue hamartoma and/or lobulated tongue, 3) additional frenula, 4) mesoaxial polydactyly of hands, 5) preaxial polydactyly of feet, 6) syndactyly and/or bifid toe, and 7) hypothalamic hamartoma.

View Article and Find Full Text PDF
Article Synopsis
  • The RTTN gene helps make a protein that works in tiny structures in our cells called centrosomes, and mutations in this gene are linked to brain problems in some families.
  • In one family, scientists found new mutations in the RTTN gene that were likely causing serious brain issues in their unborn babies, leading to three pregnancies being stopped.
  • The study shows that problems with the RTTN gene can cause a type of brain condition called microcephaly and also points out specific brain structure abnormalities found during research.
View Article and Find Full Text PDF

Ciliopathies are a group of genetic multi-systemic disorders related to dysfunction of the primary cilium, a sensory organelle present at the cell surface that regulates key signaling pathways during development and tissue homeostasis. In order to identify novel genes whose mutations would cause severe developmental ciliopathies, >500 patients/fetuses were analyzed by a targeted high throughput sequencing approach allowing exome sequencing of >1200 ciliary genes. NEK8/NPHP9 mutations were identified in five cases with severe overlapping phenotypes including renal cystic dysplasia/hypodysplasia, situs inversus, cardiopathy with hypertrophic septum and bile duct paucity.

View Article and Find Full Text PDF

Background: Meckel-Gruber syndrome (MKS) is a lethal rare inherited autosomal recessive disease. The syndrome is characterized by multiple congenital anomalies including polycystic kidneys, occipital encephalocele and polydactyly. The presence of two out of these anomalies is sufficient for a definitive diagnosis.

View Article and Find Full Text PDF

Background: Corpus callosum malformation (CCM) is the most frequent brain malformation observed at birth. Because CCM is a highly heterogeneous condition, the prognosis of fetuses diagnosed prenatally remains uncertain, making prenatal counseling difficult.

Methods And Results: We evaluated retrospectively a total of 138 fetuses, 117 with CCM observed on prenatal imaging examination, and 21 after postmortem autopsy.

View Article and Find Full Text PDF

Introduction: Joubert syndrome is a rare congenital disorder characterized by brain malformation, developmental delay with hypotonia, ocular motor apraxia, and breathing abnormalities. Joubert syndrome is a genetically highly heterogeneous ciliopathy disorder with 23 identified causative genes. The diagnosis is based on brain imaging showing the "molar tooth sign" with cerebellar vermis agenesis.

View Article and Find Full Text PDF
Article Synopsis
  • * In studies of four families with lethal ciliopathies, homozygous mutations in KIAA0586 were identified, resulting in conditions like hydrolethalus and short-rib polydactyly.
  • * The research indicates that while centriolar maturation remains unaffected, KIAA0586 mutations disrupt normal cell function and GLI3 processing, highlighting its essential role in cilia formation and signaling.
View Article and Find Full Text PDF

The Meckel syndrome (MKS) complex functions at the transition zone, located between the basal body and axoneme, to regulate the localization of ciliary membrane proteins. We investigated the role of Tmem231, a two-pass transmembrane protein, in MKS complex formation and function. Consistent with a role in transition zone function, mutation of mouse Tmem231 disrupts the localization of proteins including Arl13b and Inpp5e to cilia, resulting in phenotypes characteristic of MKS such as polydactyly and kidney cysts.

View Article and Find Full Text PDF

Joubert syndrome (JS) is a genetically heterogeneous autosomal recessive ciliopathy with 22 genes implicated to date, including a small, ciliary GTPase, ARL13B. ARL13B is required for cilia formation in vertebrates. JS patients display multiple symptoms characterized by ataxia due to the cerebellar vermis hypoplasia, and that can also include ocular abnormalities, renal cysts, liver fibrosis or polydactyly.

View Article and Find Full Text PDF

Joubert syndrome (JS) is characterized by a distinctive cerebellar structural defect, namely the << molar tooth sign >>. JS is genetically heterogeneous, involving 20 genes identified to date, which are all required for cilia biogenesis and/or function. In a consanguineous family with JS associated with optic nerve coloboma, kidney hypoplasia, and polydactyly, combined exome sequencing and mapping identified a homozygous splice-site mutation in PDE6D, encoding a prenyl-binding protein.

View Article and Find Full Text PDF

Joubert syndrome and related disorders (JSRD) are clinically and genetically heterogeneous ciliopathies sharing a peculiar midbrain-hindbrain malformation known as the 'molar tooth sign'. To date, 19 causative genes have been identified, all coding for proteins of the primary cilium. There is clinical and genetic overlap with other ciliopathies, in particular with Meckel syndrome (MKS), that is allelic to JSRD at nine distinct loci.

View Article and Find Full Text PDF

Background: Acrocallosal syndrome (ACLS) is a rare recessive disorder characterised by corpus callosum agenesis or hypoplasia, craniofacial dysmorphism, duplication of the hallux, postaxial polydactyly, and severe mental retardation. Recently, we identified mutations in KIF7, a key component of the Sonic hedgehog pathway, as being responsible for this syndrome.

Methods: We sequenced KIF7 in five suspected ACLS cases, one fetus and four patients, based on facial dysmorphism and brain anomalies.

View Article and Find Full Text PDF

KIF7, the human ortholog of Drosophila Costal2, is a key component of the Hedgehog signaling pathway. Here we report mutations in KIF7 in individuals with hydrolethalus and acrocallosal syndromes, two multiple malformation disorders with overlapping features that include polydactyly, brain abnormalities and cleft palate. Consistent with a role of KIF7 in Hedgehog signaling, we show deregulation of most GLI transcription factor targets and impaired GLI3 processing in tissues from individuals with KIF7 mutations.

View Article and Find Full Text PDF

Background: Bardet-Biedl syndrome (BBS) is a genetically heterogeneous, multisystemic disorder characterised by progressive retinal dystrophy, obesity, hypogenitalism, learning difficulties, renal abnormalities and postaxial polydactyly, with only the last two antenatally observable. BBS is inherited as an autosomal recessive disorder, and 14 genes have been identified to date (BBS1-BBS14). In addition, a complex digenic inheritance has been established in some families.

View Article and Find Full Text PDF

Rare lethal disease gene identification remains a challenging issue, but it is amenable to new techniques in high-throughput sequencing (HTS). Cerebral proliferative glomeruloid vasculopathy (PGV), or Fowler syndrome, is a severe autosomal recessive disorder of brain angiogenesis, resulting in abnormally thickened and aberrant perforating vessels leading to hydranencephaly. In three multiplex consanguineous families, genome-wide SNP analysis identified a locus of 14 Mb on chromosome 14.

View Article and Find Full Text PDF

Joubert syndrome (JBTS), related disorders (JSRDs) and Meckel syndrome (MKS) are ciliopathies. We now report that MKS2 and CORS2 (JBTS2) loci are allelic and caused by mutations in TMEM216, which encodes an uncharacterized tetraspan transmembrane protein. Individuals with CORS2 frequently had nephronophthisis and polydactyly, and two affected individuals conformed to the oro-facio-digital type VI phenotype, whereas skeletal dysplasia was common in fetuses affected by MKS.

View Article and Find Full Text PDF

Human ciliopathies are hereditary conditions caused by defects of proteins expressed at the primary cilium. Among ciliopathies, Joubert syndrome and related disorders (JSRD), Meckel syndrome (MKS) and nephronophthisis (NPH) present clinical and genetic overlap, being allelic at several loci. One of the most interesting gene is TMEM67, encoding the transmembrane protein meckelin.

View Article and Find Full Text PDF

Meckel-Gruber syndrome (MKS) is a lethal fetal disorder characterized by diffuse renal cystic dysplasia, polydactyly, a brain malformation that is usually occipital encephalocele, and/or vermian agenesis, with intrahepatic biliary duct proliferation. Joubert syndrome (JBS) is a viable neurological disorder with a characteristic "molar tooth sign" (MTS) on axial images reflecting cerebellar vermian hypoplasia/dysplasia. Both conditions are classified as ciliopathies with an autosomal recessive mode of inheritance.

View Article and Find Full Text PDF