Publications by authors named "Elke Ydens"

While CNS microglia have been extensively studied, relatively little is known about macrophages populating the peripheral nervous system. Here we performed ontogenic, transcriptomic and spatial characterization of sciatic nerve macrophages (snMacs). Using multiple fate-mapping systems, we show that snMacs do not derive from the early embryonic precursors colonizing the CNS, but originate primarily from late embryonic precursors and become replaced by bone-marrow-derived macrophages over time.

View Article and Find Full Text PDF

Background: Recent evidence implicates antibody responses as pivotal damaging factors in spinal cord injury (SCI)-induced neuroinflammation. To date, only a limited number of the antibody targets have been uncovered, and the discovery of novel targets with pathologic and clinical relevance still represents a major challenge.

Methods: In this study, we, therefore, applied an unbiased, innovative and powerful strategy, called serological antigen selection (SAS), to fully identify the complex information present within the antibody repertoire of SCI patients.

View Article and Find Full Text PDF

In traumatic spinal cord injury (SCI) patients, the assessment of the exact degree of lesion severity and neurological prognosis has proven to be extremely challenging. The current tools for predicting functional outcome in SCI patients such as clinical examination and magnetic resonance imaging are often inaccessible to unstable or polytraumatized patients, lack sensitivity, and are unreliable in the acute phase of the injury. Multiple candidate protein biomarkers known to be linked to the pathology have been studied for their potential to predict neurological outcome over time.

View Article and Find Full Text PDF

Background: NOD-like receptors (Nlrs) are key regulators of immune responses during infection and autoimmunity. A subset of Nlrs assembles inflammasomes, molecular platforms that are activated in response to endogenous danger and microbial ligands and that control release of interleukin (IL)-1β and IL-18. However, their role in response to injury in the nervous system is less understood.

View Article and Find Full Text PDF

The most common form of spinal muscular atrophy (SMA) is a recessive disorder caused by deleterious SMN1 mutations in 5q13, whereas the genetic etiologies of non-5q SMA are very heterogeneous and largely remain to be elucidated. In a Bulgarian family affected by autosomal-dominant proximal SMA, we performed genome-wide linkage analysis and whole-exome sequencing and found a heterozygous de novo c.320C>T (p.

View Article and Find Full Text PDF

Peripheral neuropathies are associated with a variety of clinical symptoms ranging from motor and sensory symptoms to autonomic dysfunction. The primary disease causes for peripheral nerve disorders are also very heterogeneous, including genetic causes, inflammation mediated damage and physical trauma. A common theme in these neuropathies is the important contribution of the immune system; leading either to a deterioration or an amelioration of the disease.

View Article and Find Full Text PDF

Background: The activation of the immune system in neurodegeneration has detrimental as well as beneficial effects. Which aspects of this immune response aggravate the neurodegenerative breakdown and which stimulate regeneration remains an open question. To unravel the neuroprotective aspects of the immune system we focused on a model of acute peripheral nerve injury, in which the immune system was shown to be protective.

View Article and Find Full Text PDF

Toll-like receptors comprise a family of evolutionary conserved pattern recognition receptors that act as a first defense line in the innate immune system. Upon stimulation with microbial ligands, they orchestrate the induction of a host defense response by activating different signaling cascades. Interestingly, they appear to detect the presence of endogenous signals of danger as well and as such, neurodegeneration is thought to trigger an immune response through ligation of TLRs.

View Article and Find Full Text PDF