The Cenomanian/Turonian boundary interval is associated with an oceanic anoxic event (OAE 2, 94.0 Ma) during one of the warmest episodes in the Mesozoic. To date, plant responses to these climatic conditions are known only from the northern mid-latitudinal succession in Cassis, France.
View Article and Find Full Text PDFThe Toarcian oceanic anoxic event (T-OAE) is associated with a prominent negative carbon isotope excursion (CIE; ~ 183 million years (Myr)). About 10-m-thick organic matter-rich sediments accumulated during the T-OAE in the Southwest German Basin (SWGB). Rock-Eval, maceral and biomarker analysis were used to determine variations of environmental conditions across the CIE interval.
View Article and Find Full Text PDFThe plant fossil record from Lower Triassic sedimentary successions of the Western USA is extremely meager. In this study, samples from a drill core taken near Georgetown, Idaho, were analyzed for their palynological content as well as their stable carbon isotope composition. The concentration of palynomorphs is generally low.
View Article and Find Full Text PDFThe most severe mass extinction among animals took place in the latest Permian (ca. 252 million years ago). Due to scarce and impoverished fossil floras from the earliest Triassic, the common perception has been that land plants likewise suffered a mass extinction, but doubts remained.
View Article and Find Full Text PDFThe Cenomanian-Turonian Oceanic Anoxic Event (OAE2; ~94.5 million years ago) represents an episode of global-scale marine anoxia and biotic turnover, which corresponds to one of the warmest time intervals in the Phanerozoic. Despite its global significance, information on continental ecosystem response to this greenhouse episode is lacking.
View Article and Find Full Text PDFGenerally Early Triassic floras are believed to be depauperate, suffering from protracted recovery following the Permian-Triassic extinction event. Here we present palynological data of an expanded East Greenland section documenting recovered floras in the basal Triassic (Griesbachian) and a subsequent fundamental floral turnover, postdating the Permian-Triassic boundary extinction by about 500 kyrs. This event is marked by a swap in dominating floral elements, changing from gymnosperm pollen-dominated associations in the Griesbachian to lycopsid spore-dominated assemblages in the Dienerian.
View Article and Find Full Text PDF