It is still controversial whether cranial placodes and neural crest cells arise from a common precursor at the neural plate border or whether placodes arise from non-neural ectoderm and neural crest from neural ectoderm. Using tissue grafting in embryos of Xenopus laevis, we show here that the competence for induction of neural plate, neural plate border and neural crest markers is confined to neural ectoderm, whereas competence for induction of panplacodal markers is confined to non-neural ectoderm. This differential distribution of competence is established during gastrulation paralleling the dorsal restriction of neural competence.
View Article and Find Full Text PDFOlfactory nerve and olfactory bulb projections in lepidosirenid lungfishes were experimentally determined with neural tracers. Unilateral injections of DiI into the olfactory nerve labeled the accessory and main olfactory bulbs as well as fibers of the anterior root of the terminal nerve, which terminates extensively in cell groups of the medial hemispheric wall, the dorsal and lateral pallia, and the preoptic nuclei and posterior tubercle. Lepidosirenid lungfishes do not exhibit separate vomeronasal nerves, but previous data indicate that calbindin-positive receptors within basal crypts of the olfactory epithelium are homologous to the vomeronasal organ of tetrapods.
View Article and Find Full Text PDFAfter primary neurogenesis in the Xenopus laevis embryo, a massive new surge of neurogenesis and related neurogenic and proneural gene expression occurs in the spinal cord at the beginning of the larval period (starting at Stage 46), which corresponds to well-documented secondary neurogenesis in larval zebrafish central nervous system development. Here, we document related neural proliferation and gene expression patterns in the brain of Xenopus, in various embryonic and larval stages, showing the distribution of proliferative cells (immunostaining of cells containing the proliferating cell nuclear antigen; the auxiliary protein of DNA polymerase delta; PCNA), and the activity of some critical genes expressed during neurogenesis (i.e.
View Article and Find Full Text PDFConnections of the medial precommissural subpallial ventral telencephalon, i.e., dorsal (Vd, interpreted as part of striatum) and ventral (Vv, interpreted as part of septum) nuclei of area ventralis telencephali, were studied in the zebrafish (Danio rerio) using two tracer substances (DiI or biocytin).
View Article and Find Full Text PDFThe monoamine serotonin (5-HT) exerts key neuromodulatory activities in all animal phyla, but the development and function of the serotonergic system is still incompletely understood. The zebrafish Danio rerio is an excellent model to approach this question since it is amenable to a combination of genetic, molecular and embryological studies. In order to characterize the organization of serotonergic neurons in the zebrafish we cloned two cDNAs encoding distinct forms of tryptophan hydroxylase (Tph), the rate-limiting enzyme in serotonin synthesis.
View Article and Find Full Text PDFThe monoamine serotonin (5-HT) exerts key neuromodulatory activities in all animal phyla, but the development and function of the serotonergic system is still incompletely understood. The zebrafish Danio rerio is an excellent model to approach this question since it is amenable to a combination of genetic, molecular and embryological studies. In order to characterize the organization of serotonergic neurons in the zebrafish we cloned two cDNAs encoding distinct forms of tryptophan hydroxylase (Tph), the rate-limiting enzyme in serotonin synthesis.
View Article and Find Full Text PDFBrain Res Dev Brain Res
July 2002
Tyrosine hydroxylase-containing cells (TH cells) were investigated immunohistochemically in early and late postembryonic zebrafish brain sections (at 2 and 5 days postfertilization [dpf]) yielding an improved neuroanatomical resolution of spatiotemporal developmental dynamics of the catecholaminergic system. Additionally, double-immunolabel preparations for visualizing TH cells and cells containing the proliferating cell nuclear antigen (PCNA cells) were carried out allowing for a prosomeric interpretation of early forebrain TH cell clusters. Many TH cell populations recently described in the adult zebrafish brain could be identified in the present study by location and cell type already in the 5 dpf (e.
View Article and Find Full Text PDFWe studied the connections and catecholaminergic organization of the subpallium in the zebrafish, in particular to demonstrate the origin of the ascending dopaminergic system of teleosts, by using the tracers DiI or biocytin in combination with tyrosine hydroxylase (TH) immunohistochemistry. Retrogradely labeled cells were found in the olfactory bulb, the area dorsalis telencephali, the preoptic region, the dorsal and ventral thalamus, the posterior tubercle, the preglomerular region, and the medulla oblongata. Moreover, the zebrafish subpallium has strong reciprocal connections with the tuberal hypothalamus.
View Article and Find Full Text PDFAn improved comparative interpretation of the teleostean forebrain suggests that the dorsal tier (Vd,Vc) and ventral tier (Vv,Vl) nuclei of the ventral telencephalic area (subpallium) represent the striatum and septum, respectively. Among other arguments, a dopaminergic innervation originating in the diencephalic posterior tubercle reaches Vd and dense efferents of Vv project to the midline hypothalamus in the adult zebrafish subpallium. The adult area dorsalis telencephali represents the teleostean pallium.
View Article and Find Full Text PDF