The cell cycle-dependent relative contributions of error-prone single-strand annealing (SSA), error-free conservative homologous recombination (HR), and potentially error-prone nonhomologous DNA end joining (NHEJ) to repair simple (induced by 200 kV X rays) or complex (induced by (241)Am alpha particles) DNA double-strand breaks (DSBs) in Chinese hamster ovary cells are reported for the first time. Cells of the parental cell line AA8 and its derivatives UV41 (SSA-deficient), irs1SF (HR-deficient) and V3 (NHEJ-deficient) were synchronized in G(1) or in S phase, and survival responses after exposure to either type of radiation were measured. It is demonstrated for the first time that in G(1)-phase SSA is negligible for the repair of DSBs of various complexities.
View Article and Find Full Text PDFThe purpose of this study was to investigate the cell cycle-dependent role of nonhomologous DNA end joining (NHEJ), conservative homologous recombination (HR), and single-strand annealing (SSA) for the repair of simple DNA double-strand breaks (DSBs) induced by H(2)O(2)-mediated OH radicals in CHO cells. Cells of the cell lines V3 (NHEJ-deficient), irs1SF (HR-deficient) and UV41 (SSA-deficient) and their parental cell line AA8 were exposed to various concentrations of H(2)O(2) in G(1) or S phase of the cell cycle and their colony-forming ability was assayed. In G(1) phase, NHEJ was the most important-if not the only-mechanism to repair H(2)O(2)-mediated DSBs; this was similar to results obtained in a parallel study of more complex DSBs induced by sparsely or densely ionizing radiation.
View Article and Find Full Text PDF