Publications by authors named "Elke K Buschbeck"

For eyes to maintain optimal focus, precise coordination is required between lens optics and retina position, a mechanism that in vertebrates is governed by genetics, visual feedback, and possibly intraocular pressure (IOP). While the underlying processes have been intensely studied in vertebrates, they remain elusive in arthropods, though visual feedback may be unimportant. How do arthropod eyes remain functional while undergoing substantial growth? Here, we test whether a common physiological process, osmoregulation, could regulate growth in the sophisticated camera-type eyes of the predatory larvae of Thermonectus marmoratus diving beetles.

View Article and Find Full Text PDF
Article Synopsis
  • * Research has shown molecular similarities between support cells in the compound eyes of fruit flies and vertebrate eyes, particularly in the context of specific eye glial cells.
  • * A study on the sunburst diving beetle suggests that its support cells also share genetic features with fruit fly and vertebrate eye glia, indicating that these support cells may be evolutionarily conserved across different types of eyes.
View Article and Find Full Text PDF

Animals generally have either compound eyes, which have evolved repeatedly in different invertebrates, or camera eyes, which have evolved many times across the animal kingdom. Both eye types include two important kinds of cells: photoreceptor cells, which can be excited by light, and non-neuronal support cells (SupCs), which provide essential support to photoreceptors. Despite many examples of convergence in eye evolution, similarities in the gross developmental plan and molecular signatures have been discovered, even between phylogenetically distant and functionally different eye types.

View Article and Find Full Text PDF

Astonishing functional diversity exists among arthropod eyes, yet eye development relies on deeply conserved genes. This phenomenon is best understood for early events, whereas fewer investigations have focused on the influence of later transcriptional regulators on diverse eye organizations and the contribution of critical support cells, such as Semper cells (SCs). As SCs in secrete the lens and function as glia, they are critical components of ommatidia.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is a leading cause of vision loss in humans. Despite its prevalence and medical significance, many aspects of AMD remain elusive and treatment options are limited. Here, we present data that suggest jumping spiders offer a unique opportunity for understanding the fundamentals underlying retinal degeneration, thereby shedding light on a process that impacts millions of people globally.

View Article and Find Full Text PDF

Vision is among the oldest and arguably most important sensory modalities for animals to interact with their external environment. Although many different eye types exist within the animal kingdom, mounting evidence indicates that the genetic networks required for visual system formation and function are relatively well conserved between species. This raises the question as to how common developmental programs are modified in functionally different eye types.

View Article and Find Full Text PDF

Under strong selective pressure for survival, image-forming vision set off an ongoing predatory arms race 500 million years ago. Since then, and particularly so in the arthropods, predatory behavior has driven a myriad of eye adaptations that increase visual performance. In this review, we provide examples of how different arthropod predators have achieved improvements in key visual features such as spatial and temporal resolution of their retina.

View Article and Find Full Text PDF

Background: Much progress has been made at the interface between neural tissue and electrodes for neurophysiology. However, there continues to be a need for novel materials that integrate well with the nervous system and facilitate neural recordings with longer-term sustainability and stability. Such materials have the potential to improve clinical approaches and provide important tools for basic neuroscience research.

View Article and Find Full Text PDF

Vision is one of the most important senses for humans and animals alike. Diverse elegant specializations have evolved among insects and other arthropods in response to specific visual challenges and ecological needs. These specializations are the subject of this Review, and they are best understood in light of the physical limitations of vision.

View Article and Find Full Text PDF

For proper function, vertebrate and invertebrate visual systems must be able to achieve and maintain emmetropia, a state where distant objects are in focus on the retina. In vertebrates, this is accomplished through a combination of genetic control during early development and homeostatic visual input that fine-tunes the optics of the eye. While emmetropization has long been researched in vertebrates, it is largely unknown how emmetropia is established in arthropods.

View Article and Find Full Text PDF

Adult jumping spiders are known for their extraordinary eyesight and complex, visually guided behaviors, including elaborate communicatory displays, navigational abilities, and prey-specific predatory strategies. Juvenile spiders also exhibit many of these behaviors, yet their visual systems are many times smaller. How do juveniles retain high visually guided performance despite severe size constraints on their visual systems? We investigated developmental changes in eye morphology and visual function in the jumping spider Phidippus audax using morphology, histology, ophthalmoscopy, and optical measurements.

View Article and Find Full Text PDF

Increased demand for compact devices leads to rapid development of miniaturized digital cameras. However, conventional camera modules contain multiple lenses along the optical axis to compensate for optical aberrations that introduce technical challenges in reducing the total thickness of the camera module. Here, we report an ultrathin digital camera inspired by the vision principle of , an endoparasite of paper wasps.

View Article and Find Full Text PDF

Spiders are among the world's most species-rich animal lineages, and their visual systems are likewise highly diverse. These modular visual systems, composed of four pairs of image-forming "camera" eyes, have taken on a huge variety of forms, exhibiting variation in eye size, eye placement, image resolution, and field of view, as well as sensitivity to color, polarization, light levels, and motion cues. However, despite this conspicuous diversity, our understanding of the genetic underpinnings of these visual systems remains shallow.

View Article and Find Full Text PDF

One of the most important functional features of eyes is focusing light, as both nearsightedness and farsightedness have major functional implications. Accordingly, refractive errors are frequently assessed in vertebrates, but not in the very small invertebrate eyes. We describe a micro-ophthalmoscope that takes advantage of autofluorescent properties of invertebrate photoreceptors and test the device on the relatively well-understood eyes of jumping spiders and flies.

View Article and Find Full Text PDF

A key innovation for high resolution eyes is a sophisticated lens that precisely focuses light onto photoreceptors. The eyes of holometabolous larvae range from very simple eyes that merely detect light to eyes that are capable of high spatial resolution. Particularly interesting are the bifocal lenses of Thermonectus marmoratus larvae, which differentially focus light on spectrally-distinct retinas.

View Article and Find Full Text PDF

Glial cells play structural and functional roles central to the formation, activity and integrity of neurons throughout the nervous system. In the retina of vertebrates, the high energetic demand of photoreceptors is sustained in part by Müller glia, an intrinsic, atypical radial glia with features common to many glial subtypes. Accessory and support glial cells also exist in invertebrates, but which cells play this function in the insect retina is largely undefined.

View Article and Find Full Text PDF

The dioptric visual system relies on precisely focusing lenses that project light onto a neural retina. While the proteins that constitute the lenses of many vertebrates are relatively well characterized, less is known about the proteins that constitute invertebrate lenses, especially the lens facets in insect compound eyes. To address this question, we used mass spectrophotometry to define the major proteins that comprise the corneal lenses from the adult Drosophila melanogaster compound eye.

View Article and Find Full Text PDF

The highly specialized evolution of Strepsiptera has produced one of the most unusual eyes among mature insects, perhaps in line with their extremely complex and challenging life cycle. This relatively rare insect order is one of the few for which it has been unclear what spectral classes of photoreceptors any of its members may possess, an even more apt question given the nocturnal evolution of the group. To address this question, we performed electroretinograms on adult male Xenos peckii: we measured spectral responses to equi-quantal monochromatic light flashes of different wavelengths, and established VlogI relationships to calculate spectral sensitivities.

View Article and Find Full Text PDF

Stemmata, the larval eyes of holometabolous insects are extremely diverse, ranging from full compound eyes, to a few ommatidial units as are typical in compound eyes, to sophisticated and functionally specialized image-forming camera-type eyes. Stemmata evolved from a compound eye ommatidial ancestor, an eye type that is morphologically well conserved in regards to cellular composition, and well studied in regards to development. However, despite this evolutionary origin it remains largely unknown how stemmata develop.

View Article and Find Full Text PDF
Rapid and step-wise eye growth in molting diving beetle larvae.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

November 2015

However complex a visual system is, the size (and growth rate) of all its components-lens, retina and nervous system-must be precisely tuned to each other for the system to be functional. As organisms grow, their eyes must be able to achieve and maintain emmetropia, a state in which photoreceptors receive sharp images of objects that are at infinity. While there has been ample research into how vertebrates coordinate eyes growth, this has never been addressed in arthropods with camera eyes, which tend to grow dramatically and typically in a step-wise manner with each molt (ecdysis).

View Article and Find Full Text PDF

A particularly unusual visual system exists in the visually guided aquatic predator, the Sunburst Diving Beetle, Thermonectus marmoratus (Coleoptera: Dytiscidae). The question arises: how does this peculiar visual system function? A series of experiments suggests that their principal eyes (E1 and E2) are highly specialized for hunting. These eyes are tubular and have relatively long focal lengths leading to high image magnification.

View Article and Find Full Text PDF

Stemmata, the eyes of holometabolous insect larvae, have gained little attention, even though they exhibit remarkably different optical solutions, ranging from compound eyes with upright images, to sophisticated single-chamber eyes with inverted images. Such optical differences raise the question of how major transitions may have occurred. Stemmata evolved from compound eye ancestry, and optical differences are apparent even in some of the simplest systems that share strong cellular homology with adult ommatidia.

View Article and Find Full Text PDF

Very few visual systems diverge fundamentally from the basic plans of well-studied animal eyes. However, investigating those that do can provide novel insights into visual system function. A particularly unusual system exists in the principal larval eyes of a visually guided aquatic predator, the sunburst diving beetle, Thermonectus marmoratus (Coleoptera: Dystiscidae).

View Article and Find Full Text PDF

One of the biggest challenges that predators, such as the larvae of the diving beetle Thermonectus marmoratus (Coleoptera: Dytiscidae), are faced with is to accurately assess the distance of their prey. Most animals derive distance information from disparities of images that are viewed from different angles, from information that is obtained from well-controlled translational movements (motion parallax) or from the image size of known objects. Using a behavioral assay we demonstrated that T.

View Article and Find Full Text PDF

Sensorineural hearing loss is genetically heterogeneous. Here, we report that mutations in CIB2, which encodes a calcium- and integrin-binding protein, are associated with nonsyndromic deafness (DFNB48) and Usher syndrome type 1J (USH1J). One mutation in CIB2 is a prevalent cause of deafness DFNB48 in Pakistan; other CIB2 mutations contribute to deafness elsewhere in the world.

View Article and Find Full Text PDF