Publications by authors named "Elke Glasmacher"

Therapeutic antibodies are widely used to treat severe diseases. Most of them alter immune cells and act within the immunological synapse; an essential cell-to-cell interaction to direct the humoral immune response. Although many antibody designs are generated and evaluated, a high-throughput tool for systematic antibody characterization and prediction of function is lacking.

View Article and Find Full Text PDF

Post-transcriptional gene regulation in T cells is dynamic and complex as targeted transcripts respond to various factors. This is evident for the Icos mRNA encoding an essential costimulatory receptor that is regulated by several RNA-binding proteins (RBP), including Roquin-1 and Roquin-2. Here, we identify a core RBPome of 798 mouse and 801 human T cell proteins by utilizing global RNA interactome capture (RNA-IC) and orthogonal organic phase separation (OOPS).

View Article and Find Full Text PDF

Th cells integrate signals from their microenvironment to acquire distinct specialization programs for efficient clearance of diverse pathogens or for immunotolerance. Ionic signals have recently been demonstrated to affect T cell polarization and function. Sodium chloride (NaCl) was proposed to accumulate in peripheral tissues upon dietary intake and to promote autoimmunity via the Th17 cell axis.

View Article and Find Full Text PDF

The RNase Regnase-1 is a master RNA regulator in macrophages and T cells that degrades cellular and viral RNA upon NF-κB signaling. The roles of its family members, however, remain largely unknown. Here, we analyzed -deficient mice, which develop hypertrophic lymph nodes.

View Article and Find Full Text PDF

Background & Aims: The CYLD lysine 63 deubiquitinase gene (CYLD) encodes tumor suppressor protein that is mutated in familial cylindromatosus, and variants have been associated with Crohn disease (CD). Splice forms of CYLD that lack exons 7 and 8 regulate transcription factors and functions of immune cells. We examined the expression of splice forms of CYLD in colon tissues from patients with CD and their effects in mice.

View Article and Find Full Text PDF

Upon activation, cells rapidly change their functional programs and, thereby, their gene expression profile. Massive changes in gene expression occur, for example, during cellular differentiation, morphogenesis, and functional stimulation (such as activation of immune cells), or after exposure to drugs and other factors from the local environment. Depending on the stimulus and cell type, these changes occur rapidly and at any possible level of gene regulation.

View Article and Find Full Text PDF

Diverse gene regulatory mechanisms impact on immune homeostasis, and a new model now emerges as fundamental in light of recent genome-wide studies. In this picture, transcriptional networks drive functional changes during immune activation, whereas autoregulatory feedback loops of post-transcriptional programs ensure the original cell lineage identity and subsequent immune resolution.

View Article and Find Full Text PDF

Differential splicing of mRNAs not only enables regulation of gene expression levels, but also ensures a high degree of gene-product diversity. The extent to which splicing of mRNAs is utilized as a mechanism in immune cells has become evident within the last few years. Still, only a few of these mechanisms have been well studied.

View Article and Find Full Text PDF

Bcl-3 is an atypical NF-κB family member that regulates NF-κB-dependent gene expression in effector T cells, but a cell-intrinsic function in regulatory T (Treg) cells and colitis is not clear. Here we show that Bcl-3 expression levels in colonic T cells correlate with disease manifestation in patients with inflammatory bowel disease. Mice with T-cell-specific overexpression of Bcl-3 develop severe colitis that can be attributed to defective Treg cell development and function, leading to the infiltration of immune cells such as pro-inflammatory γδT cells, but not αβ T cells.

View Article and Find Full Text PDF

Activation of immune cells results in rapid functional changes, but how such fast changes are accomplished remains enigmatic. By combining time courses of 4sU-seq, RNA-seq, ribosome profiling (RP), and RNA polymerase II (RNA Pol II) ChIP-seq during T cell activation, we illustrate genome-wide temporal dynamics for ∼10,000 genes. This approach reveals not only immediate-early and posttranscriptionally regulated genes but also coupled changes in transcription and translation for >90% of genes.

View Article and Find Full Text PDF

Adaptive thermogenesis is the process of heat generation in response to cold stimulation. It is under the control of the sympathetic nervous system, whose chief effector is the catecholamine norepinephrine (NE). NE enhances thermogenesis through β3-adrenergic receptors to activate brown adipose tissue and by 'browning' white adipose tissue.

View Article and Find Full Text PDF

The transcription factors IRF4 and IRF8 represent immune-specific members of the interferon regulatory family. They play major roles in controlling the development and functioning of innate and adaptive cells. Genes encoding these factors appear to have been coopted by the immune system via gene duplication and divergence of regulatory and protein coding sequences to enable the acquisition of unique molecular properties and functions.

View Article and Find Full Text PDF

The AP1 transcription factor Batf3 is required for homeostatic development of CD8α(+) classical dendritic cells that prime CD8 T-cell responses against intracellular pathogens. Here we identify an alternative, Batf3-independent pathway in mice for CD8α(+) dendritic cell development operating during infection with intracellular pathogens and mediated by the cytokines interleukin (IL)-12 and interferon-γ. This alternative pathway results from molecular compensation for Batf3 provided by the related AP1 factors Batf, which also functions in T and B cells, and Batf2 induced by cytokines in response to infection.

View Article and Find Full Text PDF

Interferon regulatory factor 4 (IRF4) and IRF8 regulate B, T, macrophage, and dendritic cell differentiation. They are recruited to cis-regulatory Ets-IRF composite elements by PU.1 or Spi-B.

View Article and Find Full Text PDF

Argonaute (Ago) proteins interact with small regulatory RNAs such as microRNAs (miRNAs) and facilitate gene-silencing processes. miRNAs guide Ago proteins to specific mRNAs leading to translational silencing or mRNA decay. In order to understand the mechanistic details of miRNA function, it is important to characterize Ago protein interactors.

View Article and Find Full Text PDF

The molecular mechanism by which roquin controls the expression of inducible costimulator (ICOS) to prevent autoimmunity remains unsolved. Here we show that in helper T cells, roquin localized to processing (P) bodies and downregulated ICOS expression. The repression was dependent on the RNA helicase Rck, and roquin interacted with Rck and the enhancer of decapping Edc4, which act together in mRNA decapping.

View Article and Find Full Text PDF

Eri1 is a 3'-to-5' exoribonuclease conserved from fission yeast to humans. Here we show that Eri1 associates with ribosomes and ribosomal RNA (rRNA). Ribosomes from Eri1-deficient mice contain 5.

View Article and Find Full Text PDF
Article Synopsis
  • The 20 S proteasome is crucial for breaking down abnormal proteins and consists of 14 alpha and 14 beta subunits arranged in a cylindrical structure.
  • Researchers used real-time mass spectrometry to investigate the assembly process of this proteasome, revealing key intermediate forms, including an alpha/beta-heterodimer and half-proteasomes.
  • The study highlights how certain beta-subunits with longer propeptides integrate more quickly into the assembly, leading to a better understanding of the assembly pathway and the role of propeptides in this process.
View Article and Find Full Text PDF