Photolyase is an enzyme that uses light to catalyze DNA repair. To capture the reaction intermediates involved in the enzyme's catalytic cycle, we conducted a time-resolved crystallography experiment. We found that photolyase traps the excited state of the active cofactor, flavin adenine dinucleotide (FAD), in a highly bent geometry.
View Article and Find Full Text PDFReversibly switchable monomeric Cherry (rsCherry) is a photoswitchable variant of the red fluorescent protein mCherry. We report that this protein gradually and irreversibly loses its red fluorescence in the dark over a period of months at 4 °C and a few days at 37 °C. We also find that its ancestor, mCherry, undergoes a similar fluorescence loss but at a slower rate.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
September 2022
Upon absorption of a blue-light photon, fatty-acid photodecarboxylase catalyzes the decarboxylation of free fatty acids to form hydrocarbons (for example alkanes or alkenes). The major components of the catalytic mechanism have recently been elucidated by combining static and time-resolved serial femtosecond crystallography (TR-SFX), time-resolved vibrational and electronic spectroscopies, quantum-chemical calculations and site-directed mutagenesis [Sorigué et al. (2021), Science, 372, eabd5687].
View Article and Find Full Text PDFCry11Aa and Cry11Ba are the two most potent toxins produced by mosquitocidal Bacillus thuringiensis subsp. israelensis and jegathesan, respectively. The toxins naturally crystallize within the host; however, the crystals are too small for structure determination at synchrotron sources.
View Article and Find Full Text PDFThe orange carotenoid protein (OCP) is a photoactive protein involved in cyanobacterial photoprotection by quenching of the excess of light-harvested energy. The photoactivation mechanism remains elusive, in part due to absence of data pertaining to the timescales over which protein structural changes take place. It also remains unclear whether or not oligomerization of the dark-adapted and light-adapted OCP could play a role in the regulation of its energy-quenching activity.
View Article and Find Full Text PDFUnstable states studied in kinetic, time-resolved and ligand-based crystallography are often characterized by a low occupancy, which hinders structure determination by conventional methods. To automatically extract structural information pertaining to these states, we developed Xtrapol8, a program which (i) applies various flavors of Bayesian-statistics weighting to generate the most informative Fourier difference maps; (ii) determines the occupancy of the intermediate states by use of methods hitherto not available; (iii) calculates extrapolated structure factors using the various proposed formalisms while handling the issue of negative structure factor amplitudes, and (iv) refines the corresponding structures in real and reciprocal-space. The use of Xtrapol8 could accelerate data processing in kinetic and time-resolved crystallographic studies, and as well foster the identification of drug-targetable states in ligand-based crystallography.
View Article and Find Full Text PDFThe authors wish to make the following corrections to this paper [...
View Article and Find Full Text PDF() is a natural crystal-making bacterium. diversified into many subspecies that have evolved to produce crystals of hundreds of pesticidal proteins with radically different structures. Their crystalline form ensures stability and controlled release of these major virulence factors.
View Article and Find Full Text PDFThe development of finely tuned and reliable crystallization processes to obtain crystalline formulations of proteins has received growing interest from different scientific fields, including toxinology and structural biology, as well as from industry, notably for biotechnological and medical applications. As a natural crystal-making bacterium, () has evolved through millions of years to produce hundreds of highly structurally diverse pesticidal proteins as micrometer-sized crystals. The long-term stability of protein crystals in aqueous environments and their specific and controlled dissolution are characteristics that are particularly sought after.
View Article and Find Full Text PDFAnisotropic environments can drastically alter the spectroscopy and photochemistry of molecules, leading to complex structure-function relationships. We examined this using fluorescent proteins as easy-to-modify model systems. Starting from a single scaffold, we have developed a range of 27 photochromic fluorescent proteins that cover a broad range of spectroscopic properties, including the determination of 43 crystal structures.
View Article and Find Full Text PDFGreen-to-red photoconvertible fluorescent proteins (PCFPs) are key players in advanced microscopy schemes such as photoactivated localization microscopy (PALM). Whereas photoconversion and red-state blinking in PCFPs have been studied intensively, their green-state photophysical behavior has received less attention. Yet dark states in green PCFPs can become strongly populated in PALM schemes and exert an indirect but considerable influence on the quality of data recorded in the red channel.
View Article and Find Full Text PDFBacterial viruses encode a vast number of ORFan genes that lack similarity to any other known proteins. Here, we present a 2.20 Å crystal structure of N4-related Pseudomonas virus LUZ7 ORFan gp14, and elucidate its function.
View Article and Find Full Text PDFGreen-to-red photoconvertible fluorescent proteins repeatedly enter dark states, causing interrupted tracks in single-particle-tracking localization microscopy (sptPALM). We identified a long-lived dark state in photoconverted mEos4b that results from isomerization of the chromophore and efficiently absorbs cyan light. Addition of weak 488-nm light swiftly reverts this dark state to the fluorescent state.
View Article and Find Full Text PDFThe effect of the protein environment on the formation and stabilization of an elusive catalytically active polyoxometalate (POM) species, K [Hf(α -P W O )] (1), is reported. In the co-crystal of hen egg-white lysozyme (HEWL) with 1, the catalytically active monomeric species is observed, originating from the dimeric 1:2 POM form, while it is intrinsically unstable under physiological pH conditions. The protein-assisted dissociation of the dimeric POM was rationalized by means of DFT calculations.
View Article and Find Full Text PDFβ-propeller proteins are highly symmetrical, being composed of a repeated motif with four anti-parallel β-sheets arranged around a central axis. Recently we designed the first completely symmetrical β-propeller protein, Pizza6, consisting of six identical tandem repeats. Pizza6 is expected to prove a useful building block for bionanotechnology, and also a tool to investigate the folding and evolution of β-propeller proteins.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2017
Fluorophores with dynamic or controllable fluorescence emission have become essential tools for advanced imaging, such as superresolution imaging. These applications have driven the continuing development of photoactivatable or photoconvertible labels, including genetically encoded fluorescent proteins. These new probes work well but require the introduction of new labels that may interfere with the proper functioning of existing constructs and therefore require extensive functional characterization.
View Article and Find Full Text PDF"Smart fluorophores", such as reversibly switchable fluorescent proteins, are crucial for advanced fluorescence imaging. However, only a limited number of such labels is available, and many display reduced biological performance compared to more classical variants. We present the development of robustly photoswitchable variants of enhanced green fluorescent protein (EGFP), named rsGreens, that display up to 30-fold higher fluorescence in E.
View Article and Find Full Text PDFSuccessful co-crystallization of a noncovalent complex between hen egg-white lysozyme (HEWL) and the monomeric Zr(IV) -substituted Keggin polyoxometalate (POM) (Zr1 K1), (Et2 NH2)3 [Zr(PW11 O39)] (1), has been achieved, and its single-crystal X-ray structure has been determined. The dimeric Zr(IV) -substituted Keggin-type polyoxometalate (Zr1 K2), (Et2 NH2)10 [Zr(PW11 O39 )2] (2), has been previously shown to exhibit remarkable selectivity towards HEWL hydrolysis. The reported X-ray structure shows that the hydrolytically active Zr(IV) -substituted Keggin POM exists as a monomeric species.
View Article and Find Full Text PDFAdvanced imaging techniques crucially depend on the labels used. In this work, we present the structure-guided design of a fluorescent protein that displays both reversibly photochromic and green-to-red photoconversion behavior. We first designed ffDronpa, a mutant of the photochromic fluorescent protein Dronpa that matures up to three times faster while retaining its interesting photochromic features.
View Article and Find Full Text PDF