The toolbox of modern antibody engineering allows the design of versatile novel functionalities exceeding nature's repertoire. Many bispecific antibodies comprise heterodimeric Fc portions recently validated through the approval of several bispecific biotherapeutics. While heterodimerization methodologies have been established for low-throughput large-scale production, few approaches exist to overcome the bottleneck of large combinatorial screening efforts that are essential for the identification of the best possible bispecific antibody.
View Article and Find Full Text PDFSince its development in the 1980s, the Nobel Prize-awarded phage display technology has been one of the most commonly used in vitro selection technologies for the discovery of therapeutic and diagnostic antibodies. Besides the importance of selection strategy, one key component of the successful isolation of highly specific recombinant antibodies is the construction of high-quality phage display libraries. However, previous cloning protocols relied on a tedious multistep process with subsequent cloning steps for the introduction of first heavy and then light chain variable genetic antibody fragments (VH and VL).
View Article and Find Full Text PDFBispecific antibodies comprise extremely diverse architectures enabling complex modes of action, such as effector cell recruitment or conditional target modulation via dual targeting, not conveyed by monospecific antibodies. In recent years, research on bispecific therapeutics has substantially grown. However, evaluation of binding moiety combinations often leads to undesired prolonged development times.
View Article and Find Full Text PDFIn this work we present a one-step cloning approach for the establishment of antibody phage display libraries relying on type IIs restriction enzymes. We show that single chain variable fragment (scFv) libraries with adequate qualities can readily be cloned in a 'scar-less' manner and that the isolation of antigen-specific antibodies from immunized chickens is feasible within three selection rounds. Moreover, we demonstrate the general applicability of this method by rapidly constructing and panning VHH single domain antibody phage display libraries from immunized Llama repertoires.
View Article and Find Full Text PDF