Cisplatin is an effective anticancer drug; however, cisplatin use often leads to nephrotoxicity, which limits its clinical effectiveness. In this study, we determined the effect of dichloroacetate, a novel anticancer agent, in a mouse model of cisplatin-induced AKI. Pretreatment with dichloroacetate significantly attenuated the cisplatin-induced increase in BUN and serum creatinine levels, renal tubular apoptosis, and oxidative stress.
View Article and Find Full Text PDFExcitation-contraction coupling in skeletal muscle depends, in part, on a functional interaction between the ligand-gated ryanodine receptor (RyR1) and integral membrane protein Trisk 95, localized to the sarcoplasmic reticulum membrane. Various domains on Trisk 95 can associate with RyR1, yet the domain responsible for regulating RyR1 activity has remained elusive. We explored the hypothesis that a luminal Trisk 95 KEKE motif (residues 200-232), known to promote RyR1 binding, may also form the RyR1 activation domain.
View Article and Find Full Text PDFThe contractile function of the heart requires the release of Ca(2+) from intracellular Ca(2+) stores in the sarcoplasmic reticulum (SR) of cardiac muscle cells. The efficacy of Ca(2+) release depends on the amount of Ca(2+) loaded into the Ca(2+) store and the way in which this 'Ca(2+) load' influences the activity of the cardiac ryanodine receptor Ca(2+) release channel (RyR2). The effects of the Ca(2+) load on Ca(2+) release through RyR2 are facilitated by: (i) the sensitivity of RyR2 itself to luminal Ca(2+) concentrations; and (ii) interactions between the cardiac Ca(2+) -binding protein calsequestrin (CSQ) 2 and RyR2, transmitted through the 'anchoring' proteins junctin and/or triadin.
View Article and Find Full Text PDF