Publications by authors named "Elizaveta E Polyakova"

In this study, novel anion photo-responsive supramolecular hydrogels based on cysteine-silver sol (CSS) and iodate anions (IO) were prepared. The peculiarities of the self-assembly process of gel formation in the dark and under visible-light exposure were studied using a complex of modern physico-chemical methods of analysis, including viscosimetry, UV spectroscopy, dynamic light scattering, electrophoretic light scattering, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. In the dark phase, the formation of weak snot-like gels takes place in a quite narrow IO ion concentration range.

View Article and Find Full Text PDF

In this study, a novel supramolecular composite, "photogels", was synthesized by mixing of cysteine-silver sol (CSS) and methylene blue (MB). A complex of modern physico-chemical methods of analysis such as viscosimetry, UV spectroscopy, dynamic and electrophoretic light scattering, scanning electron microscopy and energy-dispersive X-ray spectroscopy showed that MB molecules are uniformly localized mainly in the space between fibers of the gel-network formed by CSS particles. Molecules of the dye also bind with the surface of CSS particles by non-covalent interactions.

View Article and Find Full Text PDF

Supramolecular hydrogels based on low-molecular-weight compounds are a unique class of so-called "soft" materials, formed by weak non-covalent interactions between precursors at their millimolar concentrations. Due to the variety of structures that can be formed using different low-molecular-weight gelators, they are widely used in various fields of technology and medicine. In this study, we report for the first time an unusual self-assembly process of mixing a hydrosol obtained from L-cysteine and silver nitrate (cysteine-silver sol-CSS) with sodium halides.

View Article and Find Full Text PDF

Herein, the problem concerning the poorer mechanical properties of gels based on low molecular weight gelators (LMWGs)-L-cysteine and silver nitrate-was solved by the addition of various polymers-polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG)-to the initial cysteine-silver sol (CSS). The physicochemical methods of analysis-viscosimetry, UV spectroscopy, DLS, and SEM-identified that cysteine-silver hydrogels (CSG) based on PVA possess the best rheological properties and porous microstructure (the average pore size is 2-10 µm) compared to gels without the polymer or with PVP or PEG. Such gels are able to form cysteine-silver cryogels (CSC) and then porous cysteine-silver films (CSF) with an average pore size of 10-20 µm and good mechanical, swelling, and adhesion to skin characteristics as long as the structure of CSS particles remains stable.

View Article and Find Full Text PDF