Gas-liquid interfaces are reaching a particular interest in biomedicine. Microbubbles, ultrasound contrast agents of clinical routine, gained increasing attention as theranostic platforms due to the preserved acoustic response, drug conjugation capabilities, and applicability in biological barrier opening. A combination of microbubbles and photodynamic therapy agents can enhance the photodynamic effect, yet the evaluation of agent conjugation on microbubble stabilization and photodynamic effect is needed.
View Article and Find Full Text PDFMicrobubbles are intravascular contrast agents clinically used in diagnostic sonography, echocardiography, and radiology imaging applications. However, up to date, the idea of creating microbubbles with multiple functionalities (e.g.
View Article and Find Full Text PDFMicrobubbles have already reached clinical practice as ultrasound contrast agents for angiography. However, modification of the bubbles' shell is needed to produce probes for ultrasound and multimodal (fluorescence/photoacoustic) imaging methods in combination with theranostics (diagnostics and therapeutics). In the present work, hybrid structures based on microbubbles with an air core and a shell composed of bovine serum albumin, albumin-coated gold nanoparticles, and clinically available photodynamic dyes (zinc phthalocyanine, indocyanine green) were shown to achieve multimodal imaging for potential applications in photodynamic therapy.
View Article and Find Full Text PDFA layered perovskite-type oxide intercalated with -butylamine is reported as an efficient photocatalyst for hydrogen production from aqueous solutions of alcohols for the first time. The hybrid photocatalyst HNdTiO×BuNH was synthesized by solid-state ceramic method followed by protonation, intercalation of methylamine and subsequent substitution by -butylamine. The product was characterized by powder XRD, TGA, STA-MS, DRS, IR, and Raman spectroscopy, CHN analysis, SEM.
View Article and Find Full Text PDF