Pathophysiology of Chagas' disease is not completely defined, although innate and adaptative immune responses are crucial. In acute infection some parasite antigens can activate macrophages, and this may result in pro-inflammatory cytokine production, nitric oxide synthesis, and consequent control of parasitemia and mortality. Cell-mediated immunity in Trypanosoma cruzi infection is also modulated by cytokines, but in addition to parasite-specific responses, autoimmunity can be also triggered.
View Article and Find Full Text PDFDuring acute infection with Trypanosoma cruzi, the causative agent of Chagas' disease, the thymus undergoes intense atrophy followed by a premature escape of CD4+CD8+ immature cortical thymocytes. Here we report a pivotal role for the endogenous lectin galectin-3 in accelerating death of thymocytes and migration of these cells away from the thymus after T. cruzi infection.
View Article and Find Full Text PDFCell migration is crucial for thymocyte differentiation, and the cellular interactions involved now begin to be unraveled, with chemokines, extracellular matrix (ECM) proteins, and their corresponding receptors being relevant in such oriented movement of thymocytes. This notion derives from in vitro, ex vivo, and in vivo experimental data, including those obtained in genetically engineered and spontaneous mutant mice. Thymic microenvironmental cells produce both groups of molecules, whereas developing thymocytes express chemokine and ECM receptors.
View Article and Find Full Text PDFThe process of thymocyte differentiation occurs within the context of the thymic microenvironment, in which T cell precursors interact with thymic microenvironmental cells and extracellular matrix. Here we studied the expression of galectin-3, a beta-galactoside binding lectin, in the thymus of young adult mice. Galectin-3 was found mainly in the medulla and to a lesser extent in the cortex.
View Article and Find Full Text PDF