Publications by authors named "Elizane E de Moraes"

Water is used as the main solvent in model systems containing bioorganic molecules. Choosing the right water model is an important step in the study of the biophysical and biochemical processes that occur in cells. In the present work, we perform molecular dynamics simulations using two distinct force fields for water: the rigid model TIP4P/2005, where only intermolecular interactions are considered, and the flexible model SPC/Fw, where intramolecular interactions are also taken into account.

View Article and Find Full Text PDF

In this study, we explore the potential of functionalized two-dimensional (2D) diamond for spin-dependent electronic devices using first-principles calculations. Specifically, we investigate functionalizations with either hydroxyl (-OH) or fluorine (-F) groups. In the case of an isolated layer, we observe that the quantity and distribution of (-OH) or (-F) on the 2D diamond surface significantly influence the/ratio of the carbon atoms in the layer.

View Article and Find Full Text PDF

In this study, using nonequilibrium molecular dynamics simulation, the flow of water in deformed carbon nanotubes is studied for two water models TIP4P/2005 and simple point charge/FH (SPC/FH). The results demonstrated a nonuniform dependence of the flow on the tube deformation and the flexibility imposed on the water molecules, leading to an unexpected increase in the flow in some cases. The effects of the tube diameter and pressure gradient are investigated to explain the abnormal flow behavior with different degrees of structural deformation.

View Article and Find Full Text PDF

We analyze the influence of different groups on the intermolecular energy of aromatic homodimers and on the interaction between a single aromatic molecule and a graphene surface. The analysis is performed for benzene, phenol, catechol, and dopamine. For calculating the energies, we employ density functional theory within the local density approximation (LDA-DFT).

View Article and Find Full Text PDF

The electrical transport properties of a four-layered hydrogen-terminated cubic boron nitride sub-nanometer film in contact with gold electrodes are investigated via density functional calculations. The sample exhibits surfaces, a fundamental feature that triggers the system to behave like a typical p-n junction diode for voltage bias in the interval -0.2 ≤ ≤ 0.

View Article and Find Full Text PDF