J Phys Condens Matter
January 2025
The study of emerging contaminants (ECs) in water resources has garnered significant attention due to their potential risks to human health and the environment. This review examines the contribution from computational approaches, focusing on the application of machine learning (ML) and molecular dynamics (MD) simulations to understand and optimize experimental applications of ECs adsorption on carbon-based nanomaterials. Condensed matter physics plays a crucial role in this research by investigating the fundamental properties of materials at the atomic and molecular levels, enabling the design and engineering of materials optimized for contaminant removal.
View Article and Find Full Text PDFWater is used as the main solvent in model systems containing bioorganic molecules. Choosing the right water model is an important step in the study of the biophysical and biochemical processes that occur in cells. In the present work, we perform molecular dynamics simulations using two distinct force fields for water: the rigid model TIP4P/2005, where only intermolecular interactions are considered, and the flexible model SPC/Fw, where intramolecular interactions are also taken into account.
View Article and Find Full Text PDFIn this study, we explore the potential of functionalized two-dimensional (2D) diamond for spin-dependent electronic devices using first-principles calculations. Specifically, we investigate functionalizations with either hydroxyl (-OH) or fluorine (-F) groups. In the case of an isolated layer, we observe that the quantity and distribution of (-OH) or (-F) on the 2D diamond surface significantly influence the/ratio of the carbon atoms in the layer.
View Article and Find Full Text PDFIn this study, using nonequilibrium molecular dynamics simulation, the flow of water in deformed carbon nanotubes is studied for two water models TIP4P/2005 and simple point charge/FH (SPC/FH). The results demonstrated a nonuniform dependence of the flow on the tube deformation and the flexibility imposed on the water molecules, leading to an unexpected increase in the flow in some cases. The effects of the tube diameter and pressure gradient are investigated to explain the abnormal flow behavior with different degrees of structural deformation.
View Article and Find Full Text PDFWe analyze the influence of different groups on the intermolecular energy of aromatic homodimers and on the interaction between a single aromatic molecule and a graphene surface. The analysis is performed for benzene, phenol, catechol, and dopamine. For calculating the energies, we employ density functional theory within the local density approximation (LDA-DFT).
View Article and Find Full Text PDFThe electrical transport properties of a four-layered hydrogen-terminated cubic boron nitride sub-nanometer film in contact with gold electrodes are investigated via density functional calculations. The sample exhibits surfaces, a fundamental feature that triggers the system to behave like a typical p-n junction diode for voltage bias in the interval -0.2 ≤ ≤ 0.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2012
In this work we show, by means of a density functional theory formalism, that the interaction between hydrogen terminated boron nitride surfaces gives rise to a metallic interface with free carriers of opposite sign at each surface. A band gap can be induced by decreasing the surface separation. The size of the band gap changes continuously from zero up to 4.
View Article and Find Full Text PDF