Cognitive deficits from dorsolateral prefrontal cortex (dlPFC) dysfunction are common in neuroinflammatory disorders, including long-COVID, schizophrenia and Alzheimer's disease, and have been correlated with kynurenine inflammatory signaling. Kynurenine is further metabolized to kynurenic acid (KYNA) in brain, where it blocks NMDA and α7-nicotinic receptors (nic-α7Rs). These receptors are essential for neurotransmission in dlPFC, suggesting that KYNA may cause higher cognitive deficits in these disorders.
View Article and Find Full Text PDFImportance: The risk of mental disorders is consistently associated with variants in CACNA1C (L-type calcium channel Cav1.2) but it is not known why these channels are critical to cognition, and whether they affect the layer III pyramidal cells in the dorsolateral prefrontal cortex that are especially vulnerable in cognitive disorders.
Objective: To examine the molecular mechanisms expressed in layer III pyramidal cells in primate dorsolateral prefrontal cortices.
Background: Biallelic pathogenic variants in GBA1 are the cause of Gaucher disease (GD) type 1 (GD1), a lysosomal storage disorder resulting from deficient glucocerebrosidase. Heterozygous GBA1 variants are also a common genetic risk factor for Parkinson's disease (PD). GD manifests with considerable clinical heterogeneity and is also associated with an increased risk for PD.
View Article and Find Full Text PDFGlutamate carboxypeptidase-II (GCPII) expression in brain is increased by inflammation, e.g. by COVID19 infection, where it reduces NAAG stimulation of metabotropic glutamate receptor type 3 (mGluR3).
View Article and Find Full Text PDFFor disorders with X-linked inheritance, variants may be transmitted through multiple generations of carrier females before an affected male is ascertained. Pathogenic variants exclusively cause X-linked retinoschisis (XLRS). While is constrained to variation, recurrent variants are frequently observed in unrelated probands.
View Article and Find Full Text PDFMetabotropic glutamate receptors type 3 (mGlu3, encoded by ) are increasingly related to cognitive functioning, including the working memory operations of the prefrontal cortex (PFC). In rhesus monkeys, mGlu3 are most commonly expressed on glia (36%), but are also very prominent on layer III dendritic spines (23%) in the dorsolateral PFC (dlPFC) where they enhance working memory-related neuronal firing. In contrast, mGlu2 are predominately presynaptic in layer III of macaque dlPFC, indicating a pre- vs.
View Article and Find Full Text PDFSchizophrenia is associated with reduced numbers of spines and dendrites from layer III of the dorsolateral prefrontal cortex (dlPFC), the layer that houses the recurrent excitatory microcircuits that subserve working memory and abstract thought. Why are these synapses so vulnerable, while synapses in deeper or more superficial layers are little affected? This review describes the special molecular properties that govern layer III neurotransmission and neuromodulation in the primate dlPFC and how they may render these circuits particularly vulnerable to genetic and environmental insults. These properties include a reliance on NMDA receptor rather than AMPA receptor neurotransmission; cAMP (cyclic adenosine monophosphate) magnification of calcium signaling near the glutamatergic synapse of dendritic spines; and potassium channels opened by cAMP/PKA (protein kinase A) signaling that dynamically alter network strength, with built-in mechanisms to take dlPFC "offline" during stress.
View Article and Find Full Text PDFGlutamate carboxypeptidase II (GCPII) expression in brain is increased by inflammation, and reduces NAAG (N-acetyl aspartyl glutamate) stimulation of mGluR3 signaling. Genetic insults in this signaling cascade are increasingly linked to cognitive disorders in humans, where increased GCPII and or decreased NAAG-mGluR3 are associated with impaired prefrontal cortical (PFC) activation and cognitive impairment. As aging is associated with increased inflammation and PFC cognitive deficits, the current study examined GCPII and mGluR3 expression in the aging rat medial PFC, and tested whether GCPII inhibition with 2-(3-mercaptopropyl) pentanedioic acid (2-MPPA) would improve working memory performance.
View Article and Find Full Text PDFChronic Stress (Thousand Oaks)
August 2021
Chronic exposure to uncontrollable stress causes loss of spines and dendrites in the prefrontal cortex (PFC), a recently evolved brain region that provides top-down regulation of thought, action, and emotion. PFC neurons generate top-down goals through recurrent excitatory connections on spines. This persistent firing is the foundation for higher cognition, including working memory, and abstract thought.
View Article and Find Full Text PDFExosomes, small membrane-bound organelles formed from endosomal membranes, represent a heterogenous source of biological and pathological biomarkers capturing the metabolic status of a cell. Exosomal cargo, including lipids, proteins, mRNAs, and miRNAs, can either act as inter-cellular messengers or are shuttled for autophagic/lysosomal degradation. Most cell types in the central nervous system (CNS) release exosomes, which serve as long and short distance communicators between neurons, astrocytes, oligodendrocytes, and microglia.
View Article and Find Full Text PDFSARS-CoV-2 is the cause of a pandemic with growing global mortality. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we identified 309 host proteins that bind the SARS-CoV-2 RNA during active infection. Integration of this data with ChIRP-MS data from three other RNA viruses defined viral specificity of RNA-host protein interactions.
View Article and Find Full Text PDFBackground: Restricting dietary sodium consumption has been considered a major component of self-care management in heart failure (HF); however, the evidence supporting this recommendation has not been conclusive. The tudy f ietary ntervention nder 100 MOL in eart ailure (SODIUM-HF) trial aims to assess the effects of dietary sodium reduction on clinical outcomes in a HF population using a pragmatic design to provide empirical evidence to guide dietary sodium intake recommendations in patients with chronic HF.
Methods: SODIUM-HF is a multicentre, open-label, blinded adjudicated endpoint, randomized controlled trial in ambulatory patients with chronic HF.
is the second most significant Alzheimer's disease (AD) risk factor gene identified through genome-wide association studies. BIN1 is an adaptor protein that can bind to several proteins including c-Myc, clathrin, adaptor protein-2 and dynamin. is widely expressed in the brain and peripheral tissue as ubiquitous and tissue-specific alternatively spliced isoforms that regulate membrane dynamics and endocytosis in multiple cell types.
View Article and Find Full Text PDFBackground: Sodium restriction is the primary dietary therapy in heart failure (HF); however, assessing sodium intake is challenging to clinicians, who commonly rely on patients' self-report of following a low-sodium diet to determine adherence. It is important to further explore the utility of self-reported adherence to a low-sodium diet in patients with HF.
Objectives: The objective of this study was to evaluate the association between patients' self-reported adherence to a low-sodium diet and dietary habits related to sodium intake in patients with chronic HF.