Unlabelled: Previous reports showed that raltegravir, a recently approved antiviral compound that targets HIV integrase, can inhibit the nuclease function of human cytomegalovirus (HCMV terminase) in vitro. In this study, subtoxic levels of raltegravir were shown to inhibit the replication of four different herpesviruses, herpes simplex virus 1 (HSV-1), HSV-2, HCMV, and mouse cytomegalovirus, by 30- to 700-fold, depending on the dose and the virus tested. Southern blotting and quantitative PCR revealed that raltegravir inhibits DNA replication of HSV-1 rather than cleavage of viral DNA.
View Article and Find Full Text PDFUnlabelled: pU(L)34 and pU(L)31 of herpes simplex virus (HSV) comprise the nuclear egress complex (NEC) and are required for budding at the inner nuclear membrane. pU(L)31 also associates with capsids, suggesting it bridges the capsid and pU(L)34 in the nuclear membrane to initiate budding. Previous studies showed that capsid association of pU(L)31 was precluded in the absence of the C terminus of pU(L)25, which along with pU(L)17 comprises the capsid vertex-specific complex, or CVSC.
View Article and Find Full Text PDFPrevious experiments identified a 12-amino-acid (aa) peptide that was sufficient to interact with the herpes simplex virus 1 (HSV-1) portal protein and was necessary to incorporate the portal into capsids. In the present study, cells were treated at various times postinfection with peptides consisting of a portion of the Drosophila antennapedia protein, previously shown to enter cells efficiently, fused to either wild-type HSV-1 scaffold peptide (YPYYPGEARGAP) or a control peptide that contained changes at positions 4 and 5. These 4-tyrosine and 5-proline residues are highly conserved in herpesvirus scaffold proteins and were previously shown to be critical for the portal interaction.
View Article and Find Full Text PDFHerpes simplex virus 2 (HSV-2) is an important human pathogen that is the major cause of genital herpes infections and a significant contributor to the epidemic spread of human immunodeficiency virus infections. The UL21 gene is conserved throughout the Alphaherpesvirinae subfamily and encodes a tegument protein that is dispensable for HSV-1 and pseudorabies virus replication in cultured cells; however, its precise functions have not been determined. To investigate the role of UL21 in the HSV-2 replicative cycle, we constructed a UL21 deletion virus (HSV-2 ΔUL21) using an HSV-2 bacterial artificial chromosome, pYEbac373.
View Article and Find Full Text PDFWe identify an NLS within herpes simplex virus scaffold proteins that is required for optimal nuclear import of these proteins into infected or uninfected nuclei, and is sufficient to mediate nuclear import of GFP. A virus lacking this NLS replicated to titers reduced by 1000-fold, but was able to make capsids containing both scaffold and portal proteins suggesting that other functions can complement the NLS in infected cells. We also show that Vp22a, the major scaffold protein, is sufficient to mediate the incorporation of portal protein into capsids, whereas proper portal immunoreactivity in the capsid requires the larger scaffold protein pU(L)26.
View Article and Find Full Text PDFHerpesvirus genomic DNA is cleaved from concatemers that accumulate in infected cell nuclei. Genomic DNA is inserted into preassembled capsids through a unique portal vertex. Extensive analyses of viral mutants have indicated that intact capsids, the portal vertex, and all components of a tripartite terminase enzyme are required to both cleave and package viral DNA, suggesting that DNA cleavage and packaging are inextricably linked.
View Article and Find Full Text PDFMast cells are critical effector cells in the pathophysiology of allergic asthma and other IgE-mediated diseases. The Tec family of tyrosine kinases Itk and Btk serve as critical signal amplifiers downstream of antigen receptors. Although both kinases are expressed and activated in mast cells following FcεRI stimulation, their individual contributions are not clear.
View Article and Find Full Text PDFU(L)31 and U(L)34 of herpes simplex virus type 1 form a complex necessary for nucleocapsid budding at the inner nuclear membrane (INM). Previous examination by immunogold electron microscopy and electron tomography showed that pU(L)31, pU(L)34, and glycoproteins D and M are recruited to perinuclear virions and densely staining regions of the INM where nucleocapsids bud into the perinuclear space. We now show by quantitative immunogold electron microscopy coupled with analysis of variance that gD-specific immunoreactivity is significantly reduced at both the INM and outer nuclear membrane (ONM) of cells infected with a U(L)34 null virus.
View Article and Find Full Text PDFHerpes simplex virus 1 nucleocapsids bud through the inner nuclear membrane (INM) into the perinuclear space to obtain a primary viral envelope. This process requires a protein complex at the INM composed of the U(L)31 and U(L)34 gene products. While it is clear that the viral kinase encoded by the U(S)3 gene regulates the localization of pU(L)31/pU(L)34 within the INM, the molecular mechanism by which this is accomplished remains enigmatic.
View Article and Find Full Text PDFHerpes simplex virus (HSV) type 1 capsids contain a single portal vertex that is composed of 12 copies of the U(L)6 gene product (pU(L)6), which forms a pore through which DNA is inserted during packaging. This unique vertex is also believed to comprise the site with which a molecular motor, termed the terminase, associates during the DNA packaging reaction. In HSV, the terminase likely comprises the U(L)15, U(L)28, and U(L)33 proteins (pU(L)15, pU(L)28, and pU(L)33, respectively).
View Article and Find Full Text PDFPrevious results indicated that the U(L)34 protein (pU(L)34) of herpes simplex virus 1 (HSV-1) is targeted to the nuclear membrane and is essential for nuclear egress of nucleocapsids. The normal localization of pU(L)34 and virions requires the U(S)3-encoded kinase that phosphorylates U(L)34 and lamin A/C. Moreover, pU(L)34 was shown to interact with lamin A in vitro.
View Article and Find Full Text PDFCells infected with herpes simplex virus type 1 (HSV-1) were conventionally embedded or freeze substituted after high-pressure freezing and stained with uranyl acetate. Electron tomograms of capsids attached to or undergoing envelopment at the inner nuclear membrane (INM), capsids within cytoplasmic vesicles near the nuclear membrane, and extracellular virions revealed the following phenomena. (i) Nucleocapsids undergoing envelopment at the INM, or B capsids abutting the INM, were connected to thickened patches of the INM by fibers 8 to 19 nm in length and < or =5 nm in width.
View Article and Find Full Text PDFIt is widely accepted that nucleocapsids of herpesviruses bud through the inner nuclear membrane (INM), but few studies have been undertaken to characterize the composition of these nascent virions. Such knowledge would shed light on the budding reaction at the INM and subsequent steps in the egress pathway. The present study focuses on glycoprotein M (gM), a type III integral membrane protein of herpes simplex virus 1 (HSV-1) that likely contains eight transmembrane domains.
View Article and Find Full Text PDFStudies to localize the herpes simplex virus 1 portal protein encoded by UL6, the putative terminase components encoded by UL15, UL 28, and UL33, the minor capsid proteins encoded by UL17, and the major scaffold protein ICP35 were conducted. ICP35 in B capsids was more resistant to trypsin digestion of intact capsids than pUL6, pUL15, pUL17, pUL28, or pUL33. ICP35 required sectioning of otherwise intact embedded capsids for immunoreactivity, whereas embedding and/or sectioning decreased the immunoreactivities of pUL6, pUL17, pUL28, and pUL33.
View Article and Find Full Text PDFHerpes simplex virus type 1 (HSV-1) virions, like those of all herpesviruses, contain a proteinaceous layer termed the tegument that lies between the nucleocapsid and viral envelope. The HSV-1 tegument is composed of at least 20 different viral proteins of various stoichiometries. VP22, the product of the U(L)49 gene, is one of the most abundant tegument proteins and is conserved among the alphaherpesviruses.
View Article and Find Full Text PDFThe wild-type UL31, UL34, and US3 proteins localized on nuclear membranes and perinuclear virions; the US3 protein was also on cytoplasmic membranes and extranuclear virions. The UL31 and UL34 proteins were not detected in extracellular virions. US3 deletion caused (i) virion accumulation in nuclear membrane invaginations, (ii) delayed virus production onset, and (iii) reduced peak virus titers.
View Article and Find Full Text PDFFollowing binding to cell surface sialic acid, entry of influenza viruses into cells is mediated by endocytosis. Productive entry of influenza virus requires the low-pH environment of the late endosome for fusion and release of the virus into the cytoplasm and transport of the virus genome into the nucleus. We investigated novel mechanisms to inhibit influenza virus infection using highly specific inhibitors of protein kinase C.
View Article and Find Full Text PDF