Publications by authors named "Elizabeth W Tucker"

Tuberculous (TB) meningitis is the deadliest form of extrapulmonary TB which disproportionately affects children and immunocompromised individuals. Studies in pulmonary TB have shown that Mycobacterium tuberculosis can alter host lipid metabolism to evade the immune system. Cholesterol lowering drugs (i.

View Article and Find Full Text PDF

Tuberculosis (TB) remains a leading cause of death, but antibiotic treatments for tuberculous meningitis, the deadliest form of TB, are based on those developed for pulmonary TB and not optimized for brain penetration. Here, we perform first-in-human dynamic F-pretomanid positron emission tomography (PET) in eight human subjects to visualize F-pretomanid biodistribution as concentration-time exposures in multiple compartments (NCT05609552), demonstrating preferential brain versus lung tissue partitioning. Preferential, antibiotic-specific partitioning into brain or lung tissues of several antibiotics, active against multidrug resistant (MDR) Mycobacterium tuberculosis strains, are confirmed in experimentally-infected mice and rabbits, using dynamic PET with chemically identical antibiotic radioanalogs, and postmortem mass spectrometry measurements.

View Article and Find Full Text PDF

Tuberculous meningitis (TB meningitis) is the most devastating form of tuberculosis (TB) and there is a critical need to optimize treatment. Linezolid is approved for multidrug resistant TB and has shown encouraging results in retrospective TB meningitis studies, with several clinical trials underway assessing its additive effects on high-dose (35 mg/kg/day) or standard-dose (10 mg/kg/day) rifampin-containing regimens. However, the efficacy of adjunctive linezolid to rifampin-containing first-line TB meningitis regimens and the tissue pharmacokinetics (PK) in the central nervous system (CNS) are not known.

View Article and Find Full Text PDF

Central nervous system (CNS) infections can lead to high mortality and severe morbidity. Diagnosis, monitoring, and assessing response to therapy of CNS infections is particularly challenging with traditional tools, such as microbiology, due to the dangers associated with invasive CNS procedures (ie, biopsy or surgical resection) to obtain tissues. Molecular imaging techniques like positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging have long been used to complement anatomic imaging such as computed tomography (CT) and magnetic resonance imaging (MRI), for in vivo evaluation of disease pathophysiology, progression, and treatment response.

View Article and Find Full Text PDF

Pretomanid is a nitroimidazole antimicrobial active against drug-resistant Mycobacterium tuberculosis and approved in combination with bedaquiline and linezolid (BPaL) to treat multidrug-resistant (MDR) pulmonary tuberculosis (TB). However, the penetration of these antibiotics into the central nervous system (CNS), and the efficacy of the BPaL regimen for TB meningitis, are not well established. Importantly, there is a lack of efficacious treatments for TB meningitis due to MDR strains, resulting in high mortality.

View Article and Find Full Text PDF

Background: Before the coronavirus disease 2019 (COVID-19) pandemic, crowded and unsanitary living conditions lacking medical expertise made US detention centers hotbeds for infectious disease outbreaks. There have been 30 000 COVID-19 cases, positivity rates exceeding 50%, and 9 deaths in Immigration and Customs Enforcement custody, but the extent of disease among children under the care of the Office of Refugee Resettlement (ORR) has not been well-documented. We sought to evaluate the burden of COVID-19 among unaccompanied minors under the ORR's responsibility.

View Article and Find Full Text PDF

Central nervous system (CNS) infections occur more commonly in young children than in adults and pose unique challenges in the developing brain. This review builds on the distinct vulnerabilities in children's peripheral immune system (outlined in part 1 of this review series) and focuses on how the developing brain responds once a CNS infection occurs. Although the protective blood-brain barrier (BBB) matures early, pathogens enter the CNS and initiate a localized innate immune response with release of cytokines and chemokines to recruit peripheral immune cells that contribute to the inflammatory cascade.

View Article and Find Full Text PDF

Central nervous system (CNS) infections remain a major burden of pediatric disease associated with significant long-term morbidity due to injury to the developing brain. Children are susceptible to various etiologies of CNS infection partly because of vulnerabilities in their peripheral immune system. Young children are known to have reduced numbers and functionality of innate and adaptive immune cells, poorer production of immune mediators, impaired responses to inflammatory stimuli and depressed antibody activity in comparison to adults.

View Article and Find Full Text PDF

Tuberculous meningitis (TB meningitis) is the most severe form of tuberculosis (TB), requiring 12 months of multidrug treatment for cure, and is associated with high morbidity and mortality. High-dose rifampin (35 mg/kg/d) is safe and improves the bactericidal activity of the standard-dose (10 mg/kg/d) rifampin-containing TB regimen in pulmonary TB. However, there are conflicting clinical data regarding its benefit for TB meningitis, where outcomes may also be associated with intracerebral inflammation.

View Article and Find Full Text PDF

Tools for noninvasive detection of bacterial pathogens are needed but are not currently available for clinical use. We have previously shown that para-aminobenzoic acid (PABA) rapidly accumulates in a wide range of pathogenic bacteria, motivating the development of related PET radiotracers. In this study, 11C-PABA PET imaging was used to accurately detect and monitor infections due to pyogenic bacteria in multiple clinically relevant animal models.

View Article and Find Full Text PDF

BACKGROUNDWhile most children who contract COVID-19 experience mild disease, high-risk children with underlying conditions may develop severe disease, requiring interventions. Kinetics of antibodies transferred via COVID-19 convalescent plasma early in disease have not been characterized.METHODSIn this study, high-risk children were prospectively enrolled to receive high-titer COVID-19 convalescent plasma (>1:320 anti-spike IgG; Euroimmun).

View Article and Find Full Text PDF
Article Synopsis
  • The paper outlines the impact of COVID-19 on multiple organ systems, highlighting that the virus triggers various inflammatory responses leading to diverse health issues.
  • It summarizes research conducted on the mechanisms of how the virus operates within the body, based on expert investigations in critical care medicine.
  • The review emphasizes the need for future research to focus on understanding the virus’s effects on organ function to enhance treatment for critically ill patients.
View Article and Find Full Text PDF

Nearly 140 years after Robert Koch discovered Mycobacterium tuberculosis, tuberculosis (TB) remains a global threat and a deadly human pathogen. M. tuberculosis is notable for complex host-pathogen interactions that lead to poorly understood disease states ranging from latent infection to active disease.

View Article and Find Full Text PDF

Background: Tuberculous meningitis (TBM) is a medical emergency, yet there are no standardized treatment guidelines for the medical or neurosurgical management of these patients and little data on neurocritical care. We conducted an international survey to understand current medical and neurosurgical TBM management and resource availability to provide baseline data needed for future multicenter trials addressing unanswered clinical research questions and the establishment of standardized guidelines.

Methods: An online survey of 77 questions covering medical and neurosurgical TBM management aimed at clinicians/nurses treating TBM was distributed as an anonymous link through email invitation, international organizations' membership distribution, and direct links on organizational webpages or social media.

View Article and Find Full Text PDF
Article Synopsis
  • Tuberculosis (TB) is a serious disease and is the main cause of death from infections, but treating it requires a long time with different medicines.
  • Researchers used a special scanning tool to study how a TB medicine called rifampin moves and works in the body without needing to do anything invasive.
  • The study found that the medicine behaves differently in various parts of the body where TB is present, and this information could help doctors give the right amount of medicine faster, possibly curing TB in just 4 months instead of 6.
View Article and Find Full Text PDF

The assessment and management of tuberculous meningitis (TBM) is often complex, yet no standardised approach exists, and evidence for the clinical care of patients, including those with critical illness, is limited. The roles of proformas and checklists are increasing in medicine; proformas provide a framework for a thorough approach to patient care, whereas checklists offer a priority-based approach that may be applied to deteriorating patients in time-critical situations. We aimed to develop a comprehensive assessment proforma and an accompanying 'priorities' checklist for patients with TBM, with the overriding goal being to improve patient outcomes.

View Article and Find Full Text PDF

Diabetic foot infections (DFIs) are a common, complex, and costly medical problem with increasing prevalence. Diagnosing DFIs is a clinical challenge due to the poor specificity of the available methods to accurately determine the presence of infection in these patients. However, failure to perform an opportune diagnosis and provide optimal antibiotic therapy can lead to higher morbidity for the patient, unnecessary amputations, and increased healthcare costs.

View Article and Find Full Text PDF

Molecular imaging is an emerging technology that enables the noninvasive visualization, characterization, and quantification of molecular events within living subjects. Positron emission tomography (PET) is a clinically available molecular imaging tool with significant potential to study pathogenesis of infections in humans. PET enables dynamic assessment of infectious processes within the same subject with high temporal and spatial resolution and obviates the need for invasive tissue sampling, which is difficult in patients and generally limited to a single time point, even in animal models.

View Article and Find Full Text PDF

Clinical diagnostic tools requiring direct sample testing cannot be applied to infections deep within the body, and clinically available imaging tools lack specificity. New approaches are needed for early diagnosis and monitoring of bacterial infections and rapid detection of drug-resistant organisms. Molecular imaging allows for longitudinal, noninvasive assessments and can provide key information about infectious processes deep within the body.

View Article and Find Full Text PDF

Central nervous system tuberculosis (TB) is devastating and affects vulnerable populations. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculous meningitis (TBM) specifically are nearly uniformly fatal, with little information being available to guide the treatment of these patients. Delamanid (DLM), a nitro-dihydro-imidazooxazole, is a new, well-tolerated anti-TB drug with a low MIC (1 to 12 ng/ml) against It is used for the treatment of pulmonary MDR-TB, but pharmacokinetic (PK) data for DLM in the central nervous system (CNS) of patients with TBM are not available.

View Article and Find Full Text PDF

Tuberculosis (TB) remains the single biggest infectious cause of death globally, claiming almost two million lives and causing disease in over 10 million individuals annually. Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes with various physiological roles implicated as key factors contributing to the spread of TB. They are involved in the breakdown of lung extracellular matrix and the consequent release of bacilli into the airways.

View Article and Find Full Text PDF

Background Over 6000 children have an in-hospital cardiac arrest in the United States annually. Most will not survive to discharge, with significant variability in survival across hospitals suggesting improvement in resuscitation performance can save lives. Methods and Results A prospective observational study of quality of chest compressions ( CC ) during pediatric in-hospital cardiac arrest associated with development and implementation of a resuscitation quality bundle.

View Article and Find Full Text PDF

Tuberculous meningitis (TBM) is a devastating form of tuberculosis (TB), and key TB antimicrobials, including rifampin, have restricted brain penetration. A lack of reliable data on intralesional drug biodistribution in infected tissues has limited pharmacokinetic (PK) modeling efforts to optimize TBM treatments. Current methods to measure intralesional drug distribution rely on tissue resection, which is difficult in humans and generally limited to a single time point even in animals.

View Article and Find Full Text PDF

Tuberculous meningitis is a serious, life-threatening disease affecting vulnerable populations, including HIV-infected individuals and young children. The US National Institutes of Health convened a workshop to identify knowledge gaps in the molecular and immunopathogenic mechanisms of tuberculous meningitis and to develop a roadmap for basic and translational research that could guide clinical studies.

View Article and Find Full Text PDF