Phase separation is an important mechanism to generate certain biomolecular condensates and organize the cell interior. Condensate formation and function remain incompletely understood due to difficulties in visualizing the condensate interior at high resolution. Here we analyzed the structure of biochemically reconstituted chromatin condensates through cryo-electron tomography.
View Article and Find Full Text PDFCobamides (Cbas) are cobalt-containing cyclic tetrapyrroles used by cells from all domains of life as co-catalyst of diverse reactions. There are several structural features that distinguish Cbas from one another. The most relevant of those features discussed in this review is the lower ligand, which is the nucleobase of a ribotide located in the lower face of the cyclic tetrapyrrole ring.
View Article and Find Full Text PDFThe nuclear pore complex (NPC) is the sole mediator of nucleocytoplasmic transport. Despite great advances in understanding its conserved core architecture, the peripheral regions can exhibit considerable variation within and between species. One such structure is the cage-like nuclear basket.
View Article and Find Full Text PDFThe combination of cryo-electron tomography and subtomogram analysis affords 3D high-resolution views of biological macromolecules in their native cellular environment, or in situ. Streamlined methods for acquiring and processing these data are advancing attainable resolutions into the realm of drug discovery. Yet regardless of resolution, structure prediction driven by artificial intelligence (AI) combined with subtomogram analysis is becoming powerful in understanding macromolecular assemblies.
View Article and Find Full Text PDFIntrons containing homing endonucleases are widespread in nature and have long been assumed to be selfish elements that provide no benefit to the host organism. These genetic elements are common in viruses, but whether they confer a selective advantage is unclear. In this work, we studied intron-encoded homing endonuclease gp210 in bacteriophage ΦPA3 and found that it contributes to viral competition by interfering with the replication of a coinfecting phage, ΦKZ.
View Article and Find Full Text PDFParkinson's Disease (PD) is the second most common neurodegenerative disorder. Mutations in leucine-rich repeat kinase 2 (LRRK2), a multi-domain protein containing both a kinase and a GTPase, are a leading cause of the familial form of PD. Pathogenic LRRK2 mutations increase LRRK2 kinase activity.
View Article and Find Full Text PDFAs nucleus-forming phages become better characterized, understanding their unifying similarities and unique differences will help us understand how they occupy varied niches and infect diverse hosts. All identified nucleus-forming phages fall within the proposed Chimalliviridae family and share a core genome of 68 unique genes including chimallin, the major nuclear shell protein. A well-studied but non-essential protein encoded by many nucleus-forming phages is PhuZ, a tubulin homolog which aids in capsid migration, nucleus rotation, and nucleus positioning.
View Article and Find Full Text PDFTargeting proteins to specific subcellular destinations is essential in prokaryotes, eukaryotes, and the viruses that infect them. Chimalliviridae phages encapsulate their genomes in a nucleus-like replication compartment composed of the protein chimallin (ChmA) that excludes ribosomes and decouples transcription from translation. These phages selectively partition proteins between the phage nucleus and the bacterial cytoplasm.
View Article and Find Full Text PDFThe nuclear pore complex (NPC) is the sole mediator of nucleocytoplasmic transport. Despite great advances in understanding its conserved core architecture, the peripheral regions can exhibit considerable variation within and between species. One such structure is the cage-like nuclear basket.
View Article and Find Full Text PDFUnlabelled: Targeting proteins to specific subcellular destinations is essential in prokaryotes, eukaryotes, and the viruses that infect them. Chimalliviridae phages encapsulate their genomes in a nucleus-like replication compartment composed of the protein chimallin (ChmA) that excludes ribosomes and decouples transcription from translation. These phages selectively partition proteins between the phage nucleus and the bacterial cytoplasm.
View Article and Find Full Text PDFThe Nuclear Pore Complex (NPC) facilitates rapid and selective nucleocytoplasmic transport of molecules as large as ribosomal subunits and viral capsids. It is not clear how key emergent properties of this transport arise from the system components and their interactions. To address this question, we constructed an integrative coarse-grained Brownian dynamics model of transport through a single NPC, followed by coupling it with a kinetic model of Ran-dependent transport in an entire cell.
View Article and Find Full Text PDFMobile introns containing homing endonucleases are widespread in nature and have long been assumed to be selfish elements that provide no benefit to the host organism. These genetic elements are common in viruses, but whether they confer a selective advantage is unclear. Here we studied a mobile intron in bacteriophage ΦPA3 and found its homing endonuclease gp210 contributes to viral competition by interfering with the virogenesis of co-infecting phage ΦKZ.
View Article and Find Full Text PDFMany eukaryotic viruses require membrane-bound compartments for replication, but no such organelles are known to be formed by prokaryotic viruses. Bacteriophages of the family sequester their genomes within a phage-generated organelle, the phage nucleus, which is enclosed by a lattice of the viral protein ChmA. Previously, we observed lipid membrane-bound vesicles in cells infected by , but due to the paucity of genetics tools for these viruses it was unknown if these vesicles represented unproductive, abortive infections or a stage in the phage life cycle.
View Article and Find Full Text PDFNat Struct Mol Biol
November 2023
In the arms race between bacteria and bacteriophages (phages), some large-genome jumbo phages have evolved a protein shell that encloses their replicating genome to protect it against host immune factors. By segregating the genome from the host cytoplasm, however, the 'phage nucleus' introduces the need to specifically translocate messenger RNA and proteins through the nuclear shell and to dock capsids on the shell for genome packaging. Here, we use proximity labeling and localization mapping to systematically identify proteins associated with the major nuclear shell protein chimallin (ChmA) and other distinctive structures assembled by these phages.
View Article and Find Full Text PDFIn the arms race between bacteria and bacteriophages (phages), some large-genome jumbo phages have evolved a protein shell that encloses their replicating genome to protect it against DNA-targeting immune factors. By segregating the genome from the host cytoplasm, however, the "phage nucleus" introduces the need to specifically transport mRNA and proteins through the nuclear shell, and to dock capsids on the shell for genome packaging. Here, we use proximity labeling and localization mapping to systematically identify proteins associated with the major nuclear shell protein chimallin (ChmA) and other distinctive structures assembled by these phages.
View Article and Find Full Text PDFRecent advances in cryo-electron microscopy have marked only the beginning of the potential of this technique. To bring structure into cell biology, the modality of cryo-electron tomography has fast developed into a bona fide in situ structural biology technique where structures are determined in their native environment, the cell. Nearly every step of the cryo-focused ion beam-assisted electron tomography (cryo-FIB-ET) workflow has been improved upon in the past decade, since the first windows were carved into cells, unveiling macromolecular networks in near-native conditions.
View Article and Find Full Text PDFWe recently discovered that some bacteriophages establish a nucleus-like replication compartment (phage nucleus), but the core genes that define nucleus-based phage replication and their phylogenetic distribution were still to be determined. Here, we show that phages encoding the major phage nucleus protein chimallin share 72 conserved genes encoded within seven gene blocks. Of these, 21 core genes are unique to nucleus-forming phage, and all but one of these genes encode proteins of unknown function.
View Article and Find Full Text PDFWe recently discovered that some bacteriophages establish a nucleus-like replication compartment (phage nucleus), but the core genes that define nucleus-based phage replication and their phylogenetic distribution were unknown. By studying phages that encode the major phage nucleus protein chimallin, including previously sequenced yet uncharacterized phages, we discovered that chimallin-encoding phages share a set of 72 highly conserved genes encoded within seven distinct gene blocks. Of these, 21 core genes are unique to this group, and all but one of these unique genes encode proteins of unknown function.
View Article and Find Full Text PDFIntracellular phase separation is emerging as a universal principle for organizing biochemical reactions in time and space. It remains incompletely resolved how biological function is encoded in these assemblies and whether this depends on their material state. The conserved intrinsically disordered protein PopZ forms condensates at the poles of the bacterium Caulobacter crescentus, which in turn orchestrate cell-cycle regulating signaling cascades.
View Article and Find Full Text PDFNucleus-forming jumbo phages establish an intricate subcellular organization, enclosing phage genomes within a proteinaceous shell called the phage nucleus. During infection in Pseudomonas, some jumbo phages assemble a bipolar spindle of tubulin-like PhuZ filaments that positions the phage nucleus at midcell and drives its intracellular rotation. This facilitates the distribution of capsids on its surface for genome packaging.
View Article and Find Full Text PDFBacteria encode myriad defences that target the genomes of infecting bacteriophage, including restriction-modification and CRISPR-Cas systems. In response, one family of large bacteriophages uses a nucleus-like compartment to protect its replicating genomes by excluding host defence factors. However, the principal composition and structure of this compartment remain unknown.
View Article and Find Full Text PDFAcinetobacter baumannii is an opportunistic pathogen typically associated with hospital-acquired infections. Our understanding of the metabolism and physiology of A. baumannii is limited.
View Article and Find Full Text PDFVisualizing macromolecules inside bacteria at a high spatial resolution has remained a challenge owing to their small size and limited resolution of optical microscopy techniques. Recent advances in cryo-electron tomography (cryo-ET) imaging methods have revealed the spatial and temporal assemblies of many macromolecules involved in different cellular processes in bacteria at a resolution of a few nanometers in their native milieu. Specifically, the application of cryo-focused ion beam (cryo-FIB) milling to thin bacterial specimens makes them amenable for high-resolution cryo-ET data collection.
View Article and Find Full Text PDFAdenosylcobamides (AdoCbas) are coenzymes required by organisms from all domains of life to perform challenging chemical reactions. AdoCbas are characterized by a cobalt-containing tetrapyrrole ring, where an adenosyl group is covalently attached to the cobalt ion via a unique Co-C organometallic bond. During catalysis, this bond is homolytically cleaved by AdoCba-dependent enzymes to form an adenosyl radical that is critical for intra-molecular rearrangements.
View Article and Find Full Text PDF