Publications by authors named "Elizabeth V Minten"

DNA-dependent protein kinase (DNA-PK) plays a critical role in non-homologous end joining (NHEJ), the predominant pathway that repairs DNA double-strand breaks (DSB) in response to ionizing radiation (IR) to govern genome integrity. The interaction of the catalytic subunit of DNA-PK (DNA-PKcs) with the Ku70/Ku80 heterodimer on DSBs leads to DNA-PK activation; however, it is not known if upstream signaling events govern this activation. Here, we reveal a regulatory step governing DNA-PK activation by SIRT2 deacetylation, which facilitates DNA-PKcs localization to DSBs and interaction with Ku, thereby promoting DSB repair by NHEJ.

View Article and Find Full Text PDF

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) has a dNTPase-independent function in promoting DNA end resection to facilitate DNA double-strand break (DSB) repair by homologous recombination (HR); however, it is not known if upstream signaling events govern this activity. Here, we show that SAMHD1 is deacetylated by the SIRT1 sirtuin deacetylase, facilitating its binding with ssDNA at DSBs, to promote DNA end resection and HR. SIRT1 complexes with and deacetylates SAMHD1 at conserved lysine 354 (K354) specifically in response to DSBs.

View Article and Find Full Text PDF

Lysine acetylation is an important post-translational modification that is used in multiple cellular pathways, such as the regulation of gene expression at the histone level. The purpose of this assay is to test for putative substrates of class III deacetylases using an method. The analysis helps circumvent confounding variables when assessing for a direct relationship between deacetylase and substrate, such as the effects of other cellular deacetylases or acetyltransferases that modify the substrate .

View Article and Find Full Text PDF

The breast cancer type I susceptibility protein (BRCA1) and BRCA1-associated RING domain protein I (BARD1) heterodimer promote genome integrity through pleiotropic functions, including DNA double-strand break (DSB) repair by homologous recombination (HR). BRCA1-BARD1 heterodimerization is required for their mutual stability, HR function, and role in tumor suppression; however, the upstream signaling events governing BRCA1-BARD1 heterodimerization are unclear. Here, we show that SIRT2, a sirtuin deacetylase and breast tumor suppressor, promotes BRCA1-BARD1 heterodimerization through deacetylation.

View Article and Find Full Text PDF

Small cell lung cancer (SCLC) is a highly aggressive malignancy with poor outcomes associated with resistance to cisplatin-based chemotherapy. Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb repressive complex 2 (PRC2), which silences transcription through trimethylation of histone H3 lysine 27 (H3K27me3) and has emerged as an important therapeutic target with inhibitors targeting its methyltransferase activity under clinical investigation. Here, we show that EZH2 has a non-catalytic and PRC2-independent role in stabilizing DDB2 to promote nucleotide excision repair (NER) and govern cisplatin resistance in SCLC.

View Article and Find Full Text PDF

DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR.

View Article and Find Full Text PDF