Publications by authors named "Elizabeth Stivison"

Histone deacetylases (HDACs) repress transcription by catalyzing the removal of acetyl groups from histones. Class 1 HDACs are activated by inositol phosphate signaling molecules , but it is unclear if this regulation occurs in human cells. Inositol Polyphosphate Multikinase (IPMK) is required for production of inositol hexakisphosphate (IP6), pentakisphosphate (IP5) and certain tetrakisphosphate (IP4) species, all known activators of Class 1 HDACs .

View Article and Find Full Text PDF

Metazoan cell nuclei contain non-membrane pools of the phosphoinositide lipid PI(4,5)P2 (PIP2), but how this hydrophobic lipid exists within the aqueous nucleoplasm remains unclear. Steroidogenic Factor-1 (NR5A1, SF-1) is a nuclear receptor that binds PIP2 in vitro, and a co-crystal structure of the complex suggests the acyl chains of PIP2 are hidden in the hydrophobic core of the SF-1 protein while the PIP2 headgroup is solvent-exposed. This binding mode explains how SF-1 can solubilize nuclear PIP2; however, cellular evidence that SF-1 expression associates with nuclear PIP2 has been lacking.

View Article and Find Full Text PDF

Steroidogenic Factor-1 (SF-1, NR5A1) is a member of the nuclear receptor superfamily of ligand-regulated transcription factors, consisting of a DNA-binding domain (DBD) connected to a transcriptional regulatory ligand binding domain (LBD) via an unstructured hinge domain. SF-1 is a master regulator of development and adult function along the hypothalamic pituitary adrenal and gonadal axes, with strong pathophysiological association with endometriosis and adrenocortical carcinoma. SF-1 was shown to bind and be regulated by phospholipids, one of the most interesting aspects of SF-1 regulation is the manner in which SF-1 interacts with phospholipids: SF-1 buries the phospholipid acyl chains deep in the hydrophobic core of the SF-1 protein, while the lipid headgroups remain solvent-exposed on the exterior of the SF-1 protein surface.

View Article and Find Full Text PDF

Break-induced replication (BIR) is a mechanism used to heal one-ended DNA double-strand breaks, such as those formed at collapsed replication forks or eroded telomeres. Instead of utilizing a canonical replication fork, BIR is driven by a migrating D-loop and is associated with a high frequency of mutagenesis. Here we show that when BIR encounters an interstitial telomere sequence (ITS), the machinery frequently terminates, resulting in the formation of an ectopic telomere.

View Article and Find Full Text PDF

Loss of mitochondrial DNA (mtDNA) results in loss of mitochondrial respiratory activity, checkpoint-regulated inhibition of cell cycle progression, defects in growth, and nuclear genome instability. However, after several generations, yeast cells can adapt to the loss of mtDNA. During this adaptation, rho cells, which have no mtDNA, exhibit increased growth rates and nuclear genome stabilization.

View Article and Find Full Text PDF

Unlabelled: A subgroup of the cholesterol-dependent cytolysin (CDC) family of pore-forming toxins (PFTs) has an unusually narrow host range due to a requirement for binding to human CD59 (hCD59), a glycosylphosphatidylinositol (GPI)-linked complement regulatory molecule. hCD59-specific CDCs are produced by several organisms that inhabit human mucosal surfaces and can act as pathogens, including Gardnerella vaginalis and Streptococcus intermedius. The consequences and potential selective advantages of such PFT host limitation have remained unknown.

View Article and Find Full Text PDF

Inactivating mutations in the neurofibromatosis 2 (NF2) tumor suppressor gene results in the development of schwannomas and meningiomas. Using NF2-deficient meningioma cells and tumors, together with the normal cellular counterparts that meningiomas derive, arachnoid cells, we identified merlin as a novel negative regulator of mTOR complex 1 (mTORC1). We now show that merlin positively regulates the kinase activity of mTORC2, a second functionally distinct mTOR complex, and that downstream phosphorylation of mTORC2 substrates, including Akt, is reduced upon acute merlin deficiency in cells.

View Article and Find Full Text PDF

The SecA nanomotor promotes protein translocation in eubacteria by binding both protein cargo and the protein-conducting channel and by undergoing ATP-driven conformation cycles that drive this process. There are conflicting reports about whether SecA functions as a monomer or dimer during this dynamic process. Here we reexamined the roles of the amino and carboxyl termini of SecA in promoting its dimerization and functional state by examining three secA mutants and the corresponding proteins: SecADelta8 lacking residues 2 to 8, SecADelta11 lacking residues 2 to 11, and SecADelta11/N95 lacking both residues 2 to 11 and the carboxyl-terminal 70 residues.

View Article and Find Full Text PDF