Two-dimensional lead-halide perovskites provide a more robust alternative to three-dimensional perovskites in solar energy and optoelectronic applications due to increased chemical stability afforded by interlayer ligands. At the same time, the ligands create barriers for interlayer charge transport, reducing device performance. Using a recently developed ab initio simulation methodology, we demonstrate that ligand fluorination can enhance both hole and electron mobility by 1-2 orders of magnitude.
View Article and Find Full Text PDFOpen-circuit voltage deficits are limiting factors in kesterite solar cells. Addressing this issue by suppressing band tailing and nonradiative charge recombination is essential for enhancing the performance. We employ ab initio nonadiabatic molecular dynamics to elucidate the origin of band tailing and charge losses and propose a mitigation strategy.
View Article and Find Full Text PDFHalide interstitial defects severely hinder the optoelectronic performance of metal halide perovskites, making research on their passivation crucial. We demonstrate, using ab initio nonadiabatic molecular dynamics simulations, that hydrogen vacancies (H) at both N and C atoms of the methylammonium (MA) cation in MAPbI efficiently passivate iodine interstitials (I), providing a self-passivation strategy for dealing with the H and I defects simultaneously. H at the N site (H) introduces a defect state into the valence band, while the state contributed by H at the C site (H) evolves from a shallow level at 0 K to a deep midgap state at ambient temperature, exhibiting a high environmental activity.
View Article and Find Full Text PDFIn this work, we report a new methodology for nonadiabatic molecular dynamics calculations within the extended tight-binding (xTB) framework. We demonstrate the applicability of the developed approach to finite and periodic systems with thousands of atoms by modeling "hot" electron relaxation dynamics in silicon nanocrystals and electron-hole recombination in both a graphitic carbon nitride monolayer and a titanium-based metal-organic framework (MOF). This work reports the nonadiabatic dynamic simulations in the largest Si nanocrystals studied so far by the xTB framework, with diameters up to 3.
View Article and Find Full Text PDF