Publications by authors named "Elizabeth Selwan"

Article Synopsis
  • Ceramide-induced mitochondrial fission plays a key role in obesity caused by a high-fat diet (HFD), but existing treatments targeting mitochondrial dynamics have been largely ineffective in animal models.
  • New findings show that the synthetic sphingolipid SH-BC-893 can quickly prevent ceramide-induced mitochondrial disruptions by targeting specific endolysosomal trafficking processes.
  • Administration of SH-BC-893 in mice on a HFD not only improved mitochondrial function and normalized organ morphology within hours but also corrected metabolic issues like body weight, glucose disposal, and fat levels.
View Article and Find Full Text PDF

A synthetic sphingolipid related to a ring-constrained hydroxymethyl pyrrolidine analog of FTY720 that was known to starve cancer cells to death was chemically modified to include a series of alkoxy-tethered 3,6-substituted 1,2-pyridazines. These derivatives exhibited excellent antiproliferative activity against eight human cancer cell lines from four different cancer types. A 2.

View Article and Find Full Text PDF

Inspired by the cytotoxicity of perphenazine toward cancer cells and its ability to activate the serine/threonine protein phosphatase 2A (PP2A), we prepared series of ether-carbon linked analogs of a constrained synthetic sphingolipid analog 3, known for its cytotoxicity, nutrient transporter down-regulation and vacuolation properties, incorporating the tricyclic neuroleptics phenoxazine and phenothiazine to represent hybrid structures with possible synergistic cytotoxic activity. While the original activity of the lead compound 3 was diminished by fusion with the phenoxazine or phenothiazine tethered moieties, the corresponding 3-pyridyltetryl ether analog 10 showed cytotoxicity and nutrient transporter down-regulation similar to the lead compound 3, although it separated these PP2A-dependent phenotypes from that of vacuolation.

View Article and Find Full Text PDF

Endogenous sphingolipids (ceramide) and related synthetic molecules (FTY720, SH-BC-893) reduce nutrient access by decreasing cell surface expression of a subset of nutrient transporter proteins. Here, we report that these sphingolipids disrupt endocytic recycling by inactivating the small GTPase ARF6. Consistent with reported roles for ARF6 in maintaining the tubular recycling endosome, MICAL-L1-positive tubules were lost from sphingolipid-treated cells.

View Article and Find Full Text PDF

Oncogenic mutations drive anabolic metabolism, creating a dependency on nutrient influx through transporters, receptors, and macropinocytosis. While sphingolipids suppress tumor growth by downregulating nutrient transporters, macropinocytosis and autophagy still provide cancer cells with fuel. Therapeutics that simultaneously disrupt these parallel nutrient access pathways have potential as powerful starvation agents.

View Article and Find Full Text PDF

The constitutive anabolism of cancer cells not only supports proliferation but also addicts tumor cells to a steady influx of exogenous nutrients. Limiting access to metabolic substrates could be an effective and selective means to block cancer growth. In this review, we define the pathways by which cancer cells acquire the raw materials for anabolism, highlight the actionable proteins in each pathway, and discuss the status of therapeutic interventions that disrupt nutrient acquisition.

View Article and Find Full Text PDF

FTY720 sequesters lymphocytes in secondary lymphoid organs through effects on sphingosine-1-phosphate (S1P) receptors. However, at higher doses than are required for immunosuppression, FTY720 also functions as an anticancer agent in multiple animal models. Our published work indicates that the anticancer effects of FTY720 do not depend on actions at S1P receptors but instead stem from FTY720s ability to restrict access to extracellular nutrients by down-regulating nutrient transporter proteins.

View Article and Find Full Text PDF

LEF/TCFs direct the final step in Wnt/β-catenin signalling by recruiting β-catenin to genes for activation of transcription. Ancient, non-vertebrate TCFs contain two DNA binding domains, a High Mobility Group box for recognition of the Wnt Response Element (WRE; 5'-CTTTGWWS-3') and the C-clamp domain for recognition of the GC-rich Helper motif (5'-RCCGCC-3'). Two vertebrate TCFs (TCF-1/TCF7 and TCF-4/TCF7L2) use the C-clamp as an alternatively spliced domain to regulate cell-cycle progression, but how the C-clamp influences TCF binding and activity genome-wide is not known.

View Article and Find Full Text PDF