Tissue-resident myeloid (TRM) cells in adults have highly variable lifespans, and may be derived from early embryonic yolk sac, fetal liver, or bone marrow. Some of these TRM cells are known pathogenic participants in congenital and acquired diseases. Myeloablative conditioning and hematopoietic stem cell transplantation can replace long-lived brain TRM cells, resulting in clinical improvements in metabolic storage diseases.
View Article and Find Full Text PDFTissue resident myeloid cells (TRM) in adults have highly variable lifespans and may be derived from early embryonic yolk sac, fetal liver or bone marrow. Some of these TRM are known pathogenic participants in congenital and acquired diseases. Myeloablative conditioning and hematopoietic stem cell transplant can replace long-lived brain TRM resulting in clinical improvements in metabolic storage diseases.
View Article and Find Full Text PDFMyeloid cell heterogeneity is known, but whether it is cell-intrinsic or environmentally-directed remains unclear. Here, an inducible/reversible system pausing myeloid differentiation allowed the definition of clone-specific functions that clustered monocytes into subsets with distinctive molecular features. These subsets were orthogonal to the classical/nonclassical categorization and had inherent, restricted characteristics that did not shift under homeostasis, after irradiation, or with infectious stress.
View Article and Find Full Text PDFMost cancer deaths result from progression of therapy resistant disease, yet our understanding of this phenotype is limited. Cancer therapies generate stress signals that act upon mitochondria to initiate apoptosis. Mitochondria isolated from neuroblastoma cells were exposed to tBid or Bim, death effectors activated by therapeutic stress.
View Article and Find Full Text PDFBone metastases are devastating complications of cancer. They are particularly common in prostate cancer (PCa), represent incurable disease, and are refractory to immunotherapy. We seek to define distinct features of the bone marrow (BM) microenvironment by analyzing single cells from bone metastatic prostate tumors, involved BM, uninvolved BM, and BM from cancer-free, orthopedic patients, and healthy individuals.
View Article and Find Full Text PDFMetabolic alterations in cancer represent convergent effects of oncogenic mutations. We hypothesized that a metabolism-restricted genetic screen, comparing normal primary mouse hematopoietic cells and their malignant counterparts in an ex vivo system mimicking the bone marrow microenvironment, would define distinctive vulnerabilities in acute myeloid leukemia (AML). Leukemic cells, but not their normal myeloid counterparts, depended on the aldehyde dehydrogenase 3a2 (Aldh3a2) enzyme that oxidizes long-chain aliphatic aldehydes to prevent cellular oxidative damage.
View Article and Find Full Text PDFStromal cell populations that maintain hematopoietic stem and progenitor cells (HSPCs) are generally characterized in steady-state conditions. Here, we report a comprehensive atlas of bone marrow stromal cell subpopulations under homeostatic and stress conditions using mass cytometry (CyTOF)-based single-cell protein analysis. We identified 28 subsets of non-hematopoietic cells during homeostasis, 14 of which expressed hematopoietic regulatory factors.
View Article and Find Full Text PDF