Publications by authors named "Elizabeth Salvagio"

Nelson and Palmer (2007) concluded that figures/figural properties automatically attract attention, after they found that participants were faster to detect/discriminate targets appearing where a portion of a familiar object was suggested in an otherwise ambiguous display. We investigated whether these effects are truly automatic and whether they generalize to another figural property-convexity. We found that Nelson and Palmer's results do generalize to convexity, but only when participants are uncertain regarding when and where the target will appear.

View Article and Find Full Text PDF

Figure-ground segregation is modeled as inhibitory competition between objects that might be perceived on opposite sides of borders. The winner is the figure; the loser is suppressed, and its location is perceived as shapeless ground. Evidence of ground suppression would support inhibitory competition models and would contribute to explaining why grounds are shapeless near borders shared with figures, yet such evidence is scarce.

View Article and Find Full Text PDF

What are the roles of attention and competition in determining where objects lie in the visual field, a phenomenon known as figure-ground perception? In this chapter, we review evidence that attention and other high-level factors such as familiarity affect figure-ground perception, and we discuss models that implement these effects. Next, we consider the Biased Competition Model of Attention in which attention is used to resolve the competition for neural representation between two nearby stimuli; in this model the response to the stimulus that loses the competition is suppressed. In the remainder of the chapter we discuss recent behavioral evidence that figure-ground perception entails between-object competition in which the response to the shape of the losing competitor is suppressed.

View Article and Find Full Text PDF

Convexity has long been considered a potent cue as to which of two regions on opposite sides of an edge is the shaped figure. Experiment 1 shows that for a single edge, there is only a weak bias toward seeing the figure on the convex side. Experiments 1-3 show that the bias toward seeing the convex side as figure increases as the number of edges delimiting alternating convex and concave regions increases, provided that the concave regions are homogeneous in color.

View Article and Find Full Text PDF