Publications by authors named "Elizabeth S Ryland"

A nitrogen K-edge x-ray absorption near-edge structure (XANES) survey is presented for tetrapyrido[3,2-a:2',3'-c:3″,2″-h:2‴,3‴-j]phenazine (tpphz)-bridged bimetallic assemblies that couple chromophore and catalyst transition metal complexes for light driven catalysis, as well as their individual molecular constituents. We demonstrate the high N site sensitivity of the N pre-edge XANES features, which are energetically well-separated for the phenazine bridge N atoms and for the individual metal-bound N atoms of the inner coordination sphere ligands. By comparison with the time-dependent density functional theory calculated spectra, we determine the origins of these distinguishable spectral features.

View Article and Find Full Text PDF

The high intensity of X-ray free electron lasers (XFELs) can damage solution-phase samples on every scale, ranging from the molecular or electronic structure of a sample to the macroscopic structure of a liquid microjet. By using a large surface area liquid sheet microjet as a sample target instead of a standard cylindrical microjet, the incident X-ray spot size can be increased such that the incident intensity falls below the damage threshold. This capability is becoming particularly important for high repetition rate XFELs, where destroying a target with each pulse would require prohibitively large volumes of sample.

View Article and Find Full Text PDF

Enzyme function relies on the placement of chemistry defined by solvent and self-associative hydrogen bonding displayed by the protein backbone. Amyloids, long-range multi-peptide and -protein materials, can mimic enzyme functions while having a high proportion of stable self-associative backbone hydrogen bonds. Though catalytic amyloid structures have exhibited a degree of temperature and solvent stability, defining their full extremophilic properties and the molecular basis for such extreme activity has yet to be realized.

View Article and Find Full Text PDF

Nickel porphyrins have been extensively studied as photosensitizers due to their long-lived metal-centered excited states. The multiplicity of the (d,d) state, and/or the rate of intersystem crossing between singlet and triplet metal-centered states, has remained uncertain due to the spin-insensitivity of many spectral probes. In this work, we directly probe the metal 3d shell occupation of nickel(II) octaethylporphyrin (NiOEP) using femtosecond M-edge X-ray absorption near-edge structure (XANES).

View Article and Find Full Text PDF

Iron porphyrins are the active sites of many natural and artificial catalysts, and their photoinduced dynamics have been described as either relaxation into a vibrationally hot ground state or as a cascade through metal-centered states. In this work, we directly probe the metal center of iron(III) tetraphenyl porphyrin chloride (FeTPPCl) using femtosecond M-edge X-ray absorption near-edge structure (XANES) spectroscopy. Photoexcitation at 400 nm produces a (π,π*) state that evolves in 70 fs to an iron(II) ligand-to-metal charge transfer (LMCT) state.

View Article and Find Full Text PDF

We show that the electronic structure of molecular first-row transition-metal complexes can be reliably measured using tabletop high-harmonic XANES at the metal M2,3 edge. Extreme ultraviolet photons in the 50-70 eV energy range probe 3p → 3d transitions, with the same selection rules as soft X-ray L2,3-edge absorption (2p → 3d excitation). Absorption spectra of model complexes are sensitive to the electronic structure of the metal center, and ligand field multiplet simulations match the shapes and peak-to-peak spacings of the experimental spectra.

View Article and Find Full Text PDF