HIV-1 utilises -1 programmed ribosomal frameshifting to translate structural and enzymatic domains in a defined proportion required for replication. A slippery sequence, U UUU UUA, and a stem-loop are well-defined RNA features modulating -1 frameshifting in HIV-1. The GGG glycine codon immediately following the slippery sequence (the 'intercodon') contributes structurally to the start of the stem-loop but has no defined role in current models of the frameshift mechanism, as slippage is inferred to occur before the intercodon has reached the ribosomal decoding site.
View Article and Find Full Text PDFThe two codon-specific eubacterial release factors (RF1: UAA/UAG and RF2: UAA/UGA) have specific tripeptide motifs (PXT/SPF) within an exposed recognition loop shown in recent structures to interact with stop codons during protein synthesis termination. The motifs have been inferred to be critical for codon specificity, but this study shows that they are insufficient to determine specificity alone. Swapping the motifs or the entire loop between factors resulted in a loss of codon recognition rather than a switch of codon specificity.
View Article and Find Full Text PDFVertebrate mitochondria use stop codons UAA and UAG decoded by the release factor (RF) MTRF1L and two reassigned arginine codons, AGA and AGG. A second highly conserved RF-like factor, MTRF1, which evolved from a gene duplication of an ancestral mitochondrial RF1 and not a RF2, is a good candidate for recognizing the nonstandard codons. MTRF1 differs from other RFs by having insertions in the two external loops important for stop codon recognition (tip of helix alpha5 and recognition loop) and by having key substitutions that are involved in stop codon interactions in eubacterial RF/ribosome structures.
View Article and Find Full Text PDFRecoding mechanisms are programmed protein synthesis events used commonly by viruses but only very rarely in cells for cellular gene expression. For example, HIV-1 has an absolute reliance on frameshifting to produce the correct ratio of key proteins critical for infectivity. To exploit such recoding sites as therapeutic targets, a simple homogeneous assay capable of detecting small perturbations in these low-frequency (<5%) events is required.
View Article and Find Full Text PDFPaternally expressed gene 10 (PEG10) is a mammalian gene that is essential for embryonic development in mice. The gene contains two overlapping open reading frames (ORF1 and ORF2) and is derived from a retroelement that acquired a cellular function. It is not known if both reading frames are required for PEG10 function.
View Article and Find Full Text PDFThe decoding release factor (RF) triggers termination of protein synthesis by functionally mimicking a tRNA to span the decoding centre and the peptidyl transferase centre (PTC) of the ribosome. Structurally, it must fit into a site crafted for a tRNA and surrounded by five other RNAs, namely the adjacent peptidyl tRNA carrying the completed polypeptide, the mRNA and the three rRNAs. This is achieved by extending a structural domain from the body of the protein that results in a critical conformational change allowing it to contact the PTC.
View Article and Find Full Text PDFSix diverse prokaryotic and five eukaryotic genomes were compared to deduce whether the protein synthesis termination signal has common determinants within and across both kingdoms. Four of the six prokaryotic and all of the eukaryotic genomes investigated demonstrated a similar pattern of nucleotide bias both 5' and 3' of the stop codon. A preferred core signal of 4 nt was evident, encompassing the stop codon and the following nucleotide.
View Article and Find Full Text PDFIt was first suggested that the ribosome is associated with protein synthesis in the 1950s. Initially, its components were revealed as surface-accessible proteins and as molecules of RNA apparently providing a scaffold for subunit shape. Attributing function to the proteins proved difficult, although bacterial protein L11 proved essential for binding one of the decoding protein release factors (RFs).
View Article and Find Full Text PDFProg Nucleic Acid Res Mol Biol
January 2004
Molecular mimicry was a concept that was revived as we understood more about the ligands that bound to the active center of the ribosome, and the characteristics of the active center itself. It has been particularly useful for the termination phase of protein synthesis, because for many years this major process seemed not only to be out of step) with the initiation and elongation phases but also there were no common features of the process between eubacteria and eukaryotes. As the facts that supported molecular mimicry emerged, it was seen that the protein factors that facilitated polypeptide chain release when the decoding of an mRNA was complete had common features with the ligands involved in the other phases.
View Article and Find Full Text PDF