Publications by authors named "Elizabeth S Parrott"

Vapour deposition of metal halide perovskite by co-evaporation of precursors has the potential to achieve large-area high-efficiency solar cells on an industrial scale, yet little is known about the growth of metal halide perovskites by this method at the current time. Here, we report the fabrication of MAPbI3 films with average thicknesses from 2-320 nm by co-evaporation. We analyze the film properties using X-ray diffraction, optical absorption and photoluminescence (PL) to provide insights into the nucleation and growth of MAPbI3 films on quartz substrates.

View Article and Find Full Text PDF

An understanding of charge-carrier recombination processes is essential for the development of hybrid metal halide perovskites for photovoltaic applications. We show that typical measurements of the radiative bimolecular recombination constant in CHNHPbI are strongly affected by photon reabsorption that masks a much larger intrinsic bimolecular recombination rate constant. By investigating a set of films whose thickness varies between 50 and 533 nm, we find that the bimolecular charge recombination rate appears to slow by an order of magnitude as the film thickness increases.

View Article and Find Full Text PDF

We demonstrate four- and two-terminal perovskite-perovskite tandem solar cells with ideally matched band gaps. We develop an infrared-absorbing 1.2-electron volt band-gap perovskite, FACsSnPbI, that can deliver 14.

View Article and Find Full Text PDF

Methylammonium tin triiodide (MASnI3) has been successfully employed in lead-free perovskite solar cells, but overall power-conversion efficiencies are still significantly lower than for lead-based perovskites. Here we present photoluminescence (PL) spectra and time-resolved PL from 8 to 295 K and find a marked improvement in carrier lifetime and a substantial reduction in PL line width below ∼110 K, indicating that the cause of the hindered performance is activated at the orthorhombic to tetragonal phase transition. Our measurements therefore suggest that targeted structural change may be capable of tailoring the relative energy level alignment of defects (e.

View Article and Find Full Text PDF

Organic-inorganic metal halide perovskites have recently emerged as a top contender to be used as an absorber material in highly efficient, low-cost photovoltaic devices. Solution-processed semiconductors tend to have a high density of defect states and exhibit a large degree of electronic disorder. Perovskites appear to go against this trend, and despite relatively little knowledge of the impact of electronic defects, certified solar-to-electrical power conversion efficiencies of up to 17.

View Article and Find Full Text PDF