Publications by authors named "Elizabeth S Dennis"

Unlabelled: L., which includes Chinese cabbage, turnip, and pak choi, has more complex flowering time regulation than does due to the presence of multiple paralogous flowering time genes. () is one of the key genes regulating the flowering time, and has four paralogs.

View Article and Find Full Text PDF

Albugo candida causing white rust disease decreases the yield of Brassica rapa vegetables greatly. Resistant and susceptible cultivars in B. rapa vegetables have different immune responses against A.

View Article and Find Full Text PDF

If food and feed production are to keep up with world demand in the face of climate change, continued progress in understanding and utilizing both genetic and epigenetic sources of crop variation is necessary. Progress in plant breeding has traditionally been thought to be due to selection for spontaneous DNA sequence mutations that impart desirable phenotypes. These spontaneous mutations can expand phenotypic diversity, from which breeders can select agronomically useful traits.

View Article and Find Full Text PDF

Pollen fertility plays an important role in the application of heterosis in wheat ( L.). However, the key genes and mechanisms underlying pollen abortion in K-type male sterility remain unclear.

View Article and Find Full Text PDF

We have developed long term stable high yielding rice lines, Hybrid Mimics, from commercial hybrids. The vigour of the Mimic and the hybrid are developmental changes. These Mimics could substitute for hybrid seed for planting.

View Article and Find Full Text PDF

Covalent modifications of histone proteins act as epigenetic regulators of gene expression. We report the distribution of two active histone marks (H3K4me3 and H3K36me3) in 14-day leaves in two lines of L. by chromatin immunoprecipitation sequencing.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are RNA fragments that generally do not code for a protein but are involved in epigenetic gene regulation. In this study, lncRNAs of Brassica rapa were classified into long intergenic noncoding RNAs, natural antisense RNAs, and intronic noncoding RNAs and their expression analyzed in relation to genome-wide 24-nt small interfering RNAs (siRNAs), DNA methylation, and histone H3 lysine 27 trimethylation marks (H3K27me3). More than 65% of the lncRNAs analyzed consisted of one exon, and more than 55% overlapped with inverted repeat regions (IRRs).

View Article and Find Full Text PDF

The genus includes oil crops, vegetables, condiments, fodder crops, and ornamental plants. species underwent a whole genome triplication event after speciation between ancestral species of and closely related genera including . Diploid species such as and have three copies of genes orthologous to each gene, although deletion in one or two of the three homologs has occurred in some genes.

View Article and Find Full Text PDF

Fusarium yellows resistant and susceptible lines in Brassica rapa showed different salicylic acid responses; the resistant line showed a similar response to previous reports, but the susceptible line differed. Fusarium yellows caused by Fusarium oxysporum f. sp.

View Article and Find Full Text PDF

The seed yield increase of the hybrids and their derived Mimics compared to parents is associated with increased plant height and inflorescence branch number which are correlated with decreased expression of FT, SOC1 and FUL. In Arabidopsis, plant size has been extensively investigated, but few studies have been carried out on seed yield heterosis. In hybrids between Columbia (Col) and Landsberg erecta (Ler), and Wassilewskija (Ws) and Ler, there was significant seed yield heterosis.

View Article and Find Full Text PDF

Many polypetalous plants have a constriction at the base of the petal that leaves a small gap that can provide entry into the young flower bud before the reproductive organs are fully developed. In cotton (Gossypium hirsutum L.), this gap is occluded by tufts of short unicellular trichomes superficially resembling the fibers found on cotton seeds.

View Article and Find Full Text PDF

Heterosis or hybrid vigour is a phenomenon in which hybrid progeny exhibit superior yield and biomass to parental lines and has been used to breed F hybrid cultivars in many crops. A similar level of heterosis in all F individuals is expected as they are genetically identical. However, we found variation in rosette size in individual F plants from a cross between C24 and Columbia-0 accessions of .

View Article and Find Full Text PDF

Heterosis or hybrid vigor has been used widely for more than a decade in Canola (Brassica napus) production. Canola hybrids show heterosis in a variety of traits compared to parents, including increased biomass at the early stages of seedling establishment, which is a critical developmental step that impacts future plant growth and seed yield. In this study, we examined transcriptomes of two parental lines, Garnet (Gar) and NX0052 (0052), and their reciprocal hybrids, Gar/0052, at 4 and 8 days after sowing (DAS).

View Article and Find Full Text PDF

Arabidopsis thaliana hybrids have similar properties to hybrid crops, with greater biomass relative to the parents. We asked whether the greater biomass was due to increased photosynthetic efficiency per unit leaf area or to overall increased leaf area and increased total photosynthate per plant. We found that photosynthetic parameters (electron transport rate, CO2 assimilation rate, chlorophyll content, and chloroplast number) were unchanged on a leaf unit area and unit fresh weight basis between parents and hybrids, indicating that heterosis is not a result of increased photosynthetic efficiency.

View Article and Find Full Text PDF

Hybrid breeding is of economic importance in agriculture for increasing yield, yet the basis of heterosis is not well understood. In Arabidopsis, crosses between different accessions produce hybrids with different levels of heterosis relative to parental phenotypes in biomass. In all hybrids, the advantage of the F1 hybrid in both phenotypic uniformity and yield gain is lost in the heterogeneous F2.

View Article and Find Full Text PDF

Brassica rapa L. is an important vegetable and oilseed crop. We investigated the distribution of the histone mark tri-methylation of H3K27 (H3K27me3) in B.

View Article and Find Full Text PDF

Brassica rapa L. is an important agricultural crop that requires a period of prolonged cold for flowering. This process is known as vernalization.

View Article and Find Full Text PDF

DNA demethylases function in conjunction with DNA methyltransferases to modulate genomic DNA methylation levels in plants. The Arabidopsis genome contains four DNA demethylase genes, ( () also known as ( and . While and were shown to function in disease response in somatic tissues, has been thought to function only in reproductive tissues to maintain the maternal-specific expression pattern of a subset of imprinted genes.

View Article and Find Full Text PDF

Hybrids are used extensively in agriculture due to their superior performance in seed yield and plant growth, yet the molecular mechanisms underpinning hybrid performance are not well understood. Recent evidence has suggested that a decrease in basal defense response gene expression regulated by reduced levels of salicylic acid (SA) may be important for vigor in certain hybrid combinations. Decreasing levels of SA in the Arabidopsis () accession C24 through the introduction of the SA catabolic enzyme salicylate1 hydroxylase (NahG) increases plant size, phenocopying the large-sized C24/Landsberg (L) F1 hybrids.

View Article and Find Full Text PDF

In hybrids of Arabidopsis, cotyledons influence the amount and proportion of hybrid vigor in total plant growth. We found Arabidopsis cotyledons are essential for plant growth and in some hybrids for hybrid vigor. In hybrids between C24 and Landsberg erecta (Ler), biomass vigor (heterosis) occurs in the first few days after sowing (DAS), with hybrid cotyledons being larger than those of their parents.

View Article and Find Full Text PDF

Epigenetic gene regulation is crucial to plant life and can involve dynamic interactions between various histone modifications, DNA methylation, and small RNAs. Detailed analysis of epigenome information is anticipated to reveal how the DNA sequence of the genome is translated into the plant's phenotype. The aim of this study was to map the DNA methylation state at the whole genome level and to clarify the relationship between DNA methylation and transcription, small RNA expression, and histone H3 lysine 9 di-methylation (H3K9me2) in Brassica rapa.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2napjdeabe5aeab3fddrflng56mpnd3a): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once