Publications by authors named "Elizabeth Reczek"

Despite high vaccination rates, the incidence of whooping cough has steadily been increasing in developing countries for several decades. The current acellular pertussis (aP) vaccines all include the major protective antigen pertussis toxin (PTx) and are safer, but they appear to be less protective than infection or older, whole-cell vaccines. To better understand the attributes of individual antibodies stimulated by aP, we isolated plasmablast clones recognizing PTx after booster immunization of two donors.

View Article and Find Full Text PDF

Antibody combination therapeutics (ACTs) are polyvalent biopharmaceuticals that are uniquely suited for the control of complex diseases, including antibiotic resistant infectious diseases, autoimmune disorders and cancers. However, ACTs also represent a distinct manufacturing challenge because the independent manufacture and subsequent mixing of monoclonal antibodies quickly becomes cost prohibitive as more complex mixtures are envisioned. We have developed a virus-free recombinant protein expression platform based on adeno-associated viral (AAV) elements that is capable of rapid and consistent production of complex antibody mixtures in a single batch format.

View Article and Find Full Text PDF

Metastasis is responsible for the majority of prostate cancer-related deaths; however, little is known about the molecular mechanisms that underlie this process. Here we identify an oncogene-tumor suppressor cascade that promotes prostate cancer growth and metastasis by coordinately activating the small GTPase Ras and nuclear factor-kappaB (NF-kappaB). Specifically, we show that loss of the Ras GTPase-activating protein (RasGAP) gene DAB2IP induces metastatic prostate cancer in an orthotopic mouse tumor model.

View Article and Find Full Text PDF

Inactivating mutations in NF1 underlie the prevalent familial cancer syndrome neurofibromatosis type 1 [1]. The NF1-encoded protein is a Ras GTPase-activating protein (RasGAP) [2]. Accordingly, Ras is aberrantly activated in NF1-deficient tumors; however, it is unknown which effector pathways critically function in tumor development.

View Article and Find Full Text PDF

Tumorigenesis is a multi-step process that requires activation of oncogenes and inactivation of tumour suppressor genes. Mouse models of human cancers have recently demonstrated that continuous expression of a dominantly acting oncogene (for example, Hras, Kras and Myc) is often required for tumour maintenance; this phenotype is referred to as oncogene addiction. This concept has received clinical validation by the development of active anticancer drugs that specifically inhibit the function of oncoproteins such as BCR-ABL, c-KIT and EGFR.

View Article and Find Full Text PDF

Oncogene-induced senescence functions to limit tumor development. However, a complete understanding of the signals that trigger this type of senescence is currently lacking. We found that mutations affecting NF1, Raf, and Ras induce a global negative feedback response that potently suppresses Ras and/or its effectors.

View Article and Find Full Text PDF

Loss-of-function mutations in the NF1 tumor suppressor gene underlie the familial cancer syndrome neurofibromatosis type I (NF1). The NF1-encoded protein, neurofibromin, functions as a Ras-GTPase activating protein (RasGAP). Accordingly, deregulation of Ras is thought to contribute to NF1 development.

View Article and Find Full Text PDF

The p53 tumor suppressor gene responds to cellular stress by activating either cell cycle arrest or apoptosis. A growing number of target genes involved in each of these pathways have been identified. However, the mechanism by which the apoptosis versus arrest decision is made remains to be elucidated.

View Article and Find Full Text PDF

The induction of apoptosis by the p53 protein is critical for its activity as a tumor suppressor. Although it is clear that p53 induces apoptosis at least in part by direct transcriptional activation of target genes, the set of p53 target genes that mediate p53 function in apoptosis in vivo remains to be well defined. The Perp (p53 apoptosis effector related to PMP-22) gene is highly expressed in cells undergoing p53-dependent apoptosis as compared to cells undergoing p53-dependent G1 arrest.

View Article and Find Full Text PDF