The presence of cell surface protein CD47 allows cancer cells to evade innate and adaptive immune surveillance resulting in metastatic spread. CD47 binds to and activates SIRPα on the surface of myeloid cells, inhibiting their phagocytic activity. On the other hand, CD47 binds the matricellular protein Thrombospondin-1, limiting T-cell activation.
View Article and Find Full Text PDFBackground: CD47 is an integral membrane protein that alters adaptive immunosurveillance when bound to the matricellular glycoprotein thrombospondin-1 (TSP1). We examined the impact of the CD47/TSP1 signaling axis on melanoma patient response to anti-PD-1 therapy due to alterations in T cell activation, proliferation, effector function, and bioenergetics.
Methods: A syngeneic B16 mouse melanoma model was performed to determine if targeting CD47 as monotherapy or in combination with anti-PD-1 impacted tumor burden.
Immune checkpoint blockade (ICB) therapy has demonstrated good efficacy in many cancer types. In cancers such as non-resectable advanced or metastatic triple-negative breast cancer (TNBC), it has recently been approved as a promising treatment. However, clinical data shows overall response rates (ORRs) from ~ 3-40% in breast cancer patients, depending on subtype, previous treatments, and mutation status.
View Article and Find Full Text PDFPurpose: Immunotherapy with checkpoint inhibitors is improving the outcomes of several cancers. However, only a subset of patients respond. Therefore, predictive biomarkers are critically needed to guide treatment decisions and develop approaches to the treatment of therapeutic resistance.
View Article and Find Full Text PDFThe design of cancer immunotherapy drugs is essential for the continued investigation of novel drug regimens to improve responses and increase the survival of cancer patients. Methods to examine the interaction of effector immune cells with target cancer cells are limited by labor-intensive labeling that can be examined at specific time points. In this report, we examine an antigen-dependent model of effector cytotoxic (CD8+) T-cell-mediated cytotoxicity of target murine melanoma cells using a real-time cell impedance assay.
View Article and Find Full Text PDFExpression of immune checkpoint proteins restrict immunosurveillance in the tumor microenvironment; thus, FDA-approved checkpoint inhibitor drugs, specifically PD-1/PD-L1 and CTLA-4 inhibitors, promote a cytotoxic antitumor immune response. Aside from inflammatory signaling, immune checkpoint proteins invoke metabolic reprogramming that affects immune cell function, autonomous cancer cell bioenergetics, and patient response. Therefore, this review will focus on the metabolic alterations in immune and cancer cells regulated by currently approved immune checkpoint target proteins and the effect of costimulatory receptor signaling on immunometabolism.
View Article and Find Full Text PDFThe goal of this study was to interrogate biochemical profiles manifested in mouse lung tissue originating from wild type (WT) and null mice with the aim of revealing the in vivo role of CD47 in the metabolic response to ionizing radiation, especially changes related to the known association of CD47 deficiency with increased tissue viability and survival. For this objective, we performed global metabolomic analysis in mouse lung tissue collected from (C57Bl/6 background) WT and null mice with and without exposure to 7.6 Gy whole body radiation.
View Article and Find Full Text PDFThe metabolism of arachidonic acid and other polyunsaturated fatty acids produces eicosanoids, a family of biologically active lipids that are implicated in homeostasis and in several pathologies that involve inflammation. Inflammatory processes mediated by eicosanoids promote carcinogenesis by exerting direct effects on cancer cells and by affecting the tumor microenvironment. Therefore, understanding how eicosanoids mediate cancer progression may lead to better approaches and chemopreventive strategies for the treatment of cancer.
View Article and Find Full Text PDF