Copper is one of a handful of biologically necessary heavy metals that is also a common environmental pollutant. Under normal conditions, copper ions are required for many key physiological processes. However, in excess, copper results in cell and tissue damage ranging in severity from temporary injury to permanent neurological damage.
View Article and Find Full Text PDFCopper is one of a handful of biologically necessary heavy metals that is also a common environmental pollutant. Under normal conditions, copper ions are required for many key physiological processes. However, in excess, copper quickly results in cell and tissue damage that can range in severity from temporary injury to permanent neurological damage.
View Article and Find Full Text PDFHeavy metal pollutants can have long lasting negative impacts on ecosystem health and can shape the evolution of species. The persistent and ubiquitous nature of heavy metal pollution provides an opportunity to characterize the genetic mechanisms that contribute to metal resistance in natural populations. We examined variation in resistance to copper, a common heavy metal contaminant, using wild collections of the model organism .
View Article and Find Full Text PDFWe examined the effect of developmental exposure to three heavy metals - cadmium, copper, and lead - on gene expression in adult head tissue in the model organism . All metals affected development time and/or gene expression level. While variation in the response to each metal was apparent, two differentially-expressed genes were upregulated in response to all three metal treatments, and 11 genes were downregulated in two of the three treatments.
View Article and Find Full Text PDFA range of heavy metals are required for normal cell function and homeostasis. However, the anthropogenic release of metal compounds into soil and water sources presents a pervasive health threat. Copper is one of many heavy metals that negatively impacts diverse organisms at a global scale.
View Article and Find Full Text PDFDrosophila community composition is complex in temperate regions with different abundance of flies and species across the growing season. Monitoring Drosophila populations provides insights into the phenology of both native and invasive species. Over a single growing season, we collected Drosophila at regular intervals and determined the number of individuals of the nine species we found in Kansas, USA.
View Article and Find Full Text PDFWe leverage two complementary mapping panels to genetically dissect starvation resistance-an important fitness trait. Using >1600 genotypes from the multiparental Synthetic Population Resource (DSPR), we map numerous starvation stress QTL that collectively explain a substantial fraction of trait heritability. Mapped QTL effects allowed us to estimate DSPR founder phenotypes, predictions that were correlated with the actual phenotypes of these lines.
View Article and Find Full Text PDFFitness is determined by the ability of an organism to both survive and reproduce; however, the mechanisms that lead to increased survival may not have the same effect on reproductive success. We used nineteen natural Drosophila melanogaster genotypes from the Drosophila Genetic Reference Panel to determine if adaptive plasticity following short-term acclimation through rapid cold-hardening (RCH) affects mating behavior and mating success. We confirmed that exposure to the acclimation temperature is beneficial to survival following cold stress; however, we found that this same acclimation temperature exposure led to less efficient male courtship and a significant decrease in the likelihood of mating.
View Article and Find Full Text PDFAs organisms age, the effectiveness of natural selection weakens, leading to age-related decline in fitness-related traits. The evolution of age-related changes associated with senescence is likely influenced by mutation accumulation (MA) and antagonistic pleiotropy (AP). MA predicts that age-related decline in fitness components is driven by age-specific sets of alleles, nonnegative genetic correlations within trait across age, and an increase in the coefficient of genetic variance.
View Article and Find Full Text PDFUnderstanding how thermal selection affects phenotypic distributions across different time scales will allow us to predict the effect of climate change on the fitness of ectotherms. We tested how seasonal temperature variation affects basal levels of cold tolerance and two types of phenotypic plasticity in . Developmental acclimation occurs as developmental stages of an organism are exposed to seasonal changes in temperature and its effect is irreversible, while reversible short-term acclimation occurs daily in response to diurnal changes in temperature.
View Article and Find Full Text PDF