The lungs are major sites of metastases for several cancer types, including breast cancer (BC). Prognosis and quality of life of BC patients that develop pulmonary metastases are negatively impacted. The development of strategies to slow the growth and relieve the symptoms of BC lung metastases (BCLM) is thus an important goal in the management of BC.
View Article and Find Full Text PDFEvery year, complications during pregnancy affect more than 26 million women. Some of those diseases are associated with significant morbidity and mortality, as is the case of preeclampsia, the main cause of maternal deaths globally. The ability to improve the delivery of drugs to the placenta upon administration to the mother may offer new opportunities in the treatment of diseases of pregnancy.
View Article and Find Full Text PDFDoxorubicin (DOX) is a chemotherapeutic agent broadly used in the treatment of a range of solid tumors. In spite of its high potency, as is the case for many other chemotherapeutic drugs, there are many challenges associated with the use of DOX in clinical oncology. This is particularly true for DOX in the treatment of lung cancer, where potency is shown to be very high, but low lung distribution and off-target toxicity (particularly cardiotoxicity) restrict its use.
View Article and Find Full Text PDFPulmonary administration of polymer drug conjugates is of great potential clinical significance for treating lung cancer as such regimen significantly increases local drug concentrations while decreases systemic and local side effects. In this work, we demonstrate that nanoparticles prepared with methoxypoly(ethylene glycol) (mPEG)-doxorubicin (DOX) conjugates (mPEG-DOX) that have a pH-sensitive imine bond (Schiff base) can at the same time work as efficient carriers for DOX to kill cancer cells and also as a strategy to directly formulate nanoparticles in propellant-based inhalers. Nanoparticles prepared by precipitation in water had a diameter in the range between 100 and 120 nm.
View Article and Find Full Text PDFLung is one of the most common sites to which almost all other primary tumors metastasize. The major challenges in the chemotherapy of lung metastases include the low drug concentration found in the tumors and high systemic toxicity upon systemic administration. In this study, we combine local lung delivery and the use of nanocarrier-based systems for improving pharmacokinetics and biodistribution of the therapeutics to fight lung metastases.
View Article and Find Full Text PDFMany clinically relevant diseases with known poor therapeutic outcomes, including cancer and neurodegenerative disorders, have been directly linked to mitochondrial dysfunction. The ability to efficiently target therapeutics to intracellular organelles such as mitochondria may represent new opportunities for the effective treatment of such ailments. The present study reports the synthesis, cellular uptake, cytotoxicity, and mitochondrial colocalization of conjugates of triphenylphosphonium cation (TPP) to amine-terminated, generation 4, poly(amidoamine) (PAMAM) dendrimer (G4NH2) nanocarriers.
View Article and Find Full Text PDF