Publications by authors named "Elizabeth Pierson"

Soil-borne spp. have been extensively studied for their biocontrol activities against pathogens and growth promotion ability in plants. However, the beneficial effect of on inducing resistance against insect herbivores has been underexplored.

View Article and Find Full Text PDF

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging has been used to study the hydrolysis of tenofovir disoproxil fumarate (TDF) to tenofovir monosoproxil (TM) within an oral compressed tablet. The ToF-SIMS images displayed a heterogenous distribution of the matrix components. Evaluation of the TM distribution revealed that it was primarily co-localized with areas of higher excipient concentration pointing toward excipient driven degradation.

View Article and Find Full Text PDF

Problem: Within health science disciplines, power dynamics exist that can not only perpetuate harm but also foster feelings of powerlessness and disengagement. Although diversity, equity, and inclusion approaches have been prioritized by many institutions to improve student and staff recruitment, few effective structures exist to promote the retention, support, and inclusion of these individuals.

Approach: Restorative justice circles facilitate a collaborative and personal exercise that welcomes the input of all members, thus acting as a catalyst toward broader and more deeply rooted culture changes and conflict resolution.

View Article and Find Full Text PDF

Purpose: Oxidation is one of the most common degradation pathways for active pharmaceutical ingredients (APIs) in pharmaceutical formulations, mostly involving 1-electron processes via peroxy radicals and 2-electron processes by peroxides. In liquid pharmaceutical formulations, several factors can impact oxidative instabilities including pH, excipient impurities, headspace oxygen, and the potential for photo-oxidation. Photo-oxidation can be particularly challenging to characterize given the number of oxidative mechanisms which can occur.

View Article and Find Full Text PDF

Rhizosphere colonizing plant growth promoting bacteria (PGPB) increase their competitiveness by producing diffusible toxic secondary metabolites, which inhibit competitors and deter predators. Many PGPB also have one or more Type VI Secretion System (T6SS), for the delivery of weapons directly into prokaryotic and eukaryotic cells. Studied predominantly in human and plant pathogens as a virulence mechanism for the delivery of effector proteins, the function of T6SS for PGPB in the rhizosphere niche is poorly understood.

View Article and Find Full Text PDF

LuxR solos are common in plant-associated bacteria and increasingly recognized for playing important roles in plant-microbe interkingdom signaling. Unlike the LuxR-type transcriptional regulators of prototype LuxR/LuxI quorum sensing systems, solos do not have a LuxI-type autoinducer synthase gene associated with them. LuxR solos in plant-pathogenic bacteria are important for virulence and in plant endosymbionts contribute to symbiosis.

View Article and Find Full Text PDF

Application of plant growth promoting bacteria may induce plant salt stress tolerance, however the underpinning microbial and plant mechanisms remain poorly understood. In the present study, the specific role of phenazine production by rhizosphere-colonizing in mediating the inhibitory effects of salinity on wheat seed germination and seedling growth in four different varieties was investigated using 30-84 (wild type) and isogenic derivatives deficient or enhanced in phenazine production. The results showed that varieties differed in how they responded to the salt stress treatment and the benefits derived from colonization by 30-84.

View Article and Find Full Text PDF

Purpose: Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) coupled with gas-phase ion mobility spectrometry was used to characterize the drug distribution in polymeric implants before and after exposure to accelerated in vitro release (IVR) media. DESI-MSI provides definitive chemical identification and localization of formulation components, including 2D chemical mapping of individual components with essentially no sample preparation.

Methods: Polymeric implants containing 40% (w/w) entecavir and poly(D,L-lactide) (PLA) were prepared and then exposed to either acidified PBS (pH 2.

View Article and Find Full Text PDF

Host-mediated microbiome engineering (HMME) is a strategy that utilizes the host phenotype to indirectly select microbiomes though cyclic differentiation and propagation. In this experiment, the host phenotype of delayed onset of seedling water deficit stress symptoms was used to infer beneficial microbiome-host interactions over multiple generations. By utilizing a host-centric selection approach, microbiota are selected at a community level, therein using artificial selection to alter microbiomes through both ecological and evolutionary processes.

View Article and Find Full Text PDF

Disease caused by the bacterial pathogen " Liberibacter solanacearum" (Lso) represents a serious threat to solanaceous crop production. Insecticide applications to control the psyllid vector, Šulc (Hemiptera: Triozidae) has led to the emergence of resistance in psyllids populations. Efforts to select natural resistant cultivars have been marginally successful and have been complicated by the presence of distinct Lso haplotypes (LsoA, LsoB) differing in symptoms severity on potato and tomato.

View Article and Find Full Text PDF

This study reports the application of a novel bioprospecting procedure designed to screen plant growth-promoting rhizobacteria (PGPR) capable of rapidly colonizing the rhizosphere and mitigating drought stress in multiple hosts. Two PGPR strains were isolated by this bioprospecting screening assay and identified as sp. (12D6) and sp.

View Article and Find Full Text PDF

The specific role of phenazines produced by rhizosphere-colonizing in mediating wheat seedling drought-stress tolerance and recovery from water deficit was investigated using 30-84 and isogenic derivatives deficient or enhanced in phenazine production compared to wild type. Following a 7-day water deficit, seedlings that received no-inoculum or were colonized by the phenazine mutant wilted to collapse, whereas seedlings colonized by phenazine producers displayed less severe symptoms. After a 7-day recovery period, survival of seedlings colonized by phenazine-producing strains exceeded 80%, but was less than 60% for no-inoculum controls.

View Article and Find Full Text PDF

Enterobacter sp. strain OLF colonizes laboratory-reared and wild individuals of the olive fruit fly Bactrocera oleae. The 5.

View Article and Find Full Text PDF

Erwinia dacicola is a dominant endosymbiont of the pestiferous olive fly. Its genome is similar in size and GC content to those of free-living species, including the plant pathogen Erwinia amylovora. The E.

View Article and Find Full Text PDF

The pestivorous tephritid olive fly has long been known as a frequent host of the obligately host-associated bacterial endosymbiont, Erwinia dacicola, as well as other facultative endosymbionts. The genomes of Erwinia dacicola and Enterobacter sp. OLF, isolated from a California olive fly, encode the ability to supplement amino acids and vitamins missing from the olive fruit on which the larvae feed.

View Article and Find Full Text PDF

R-tailocins are high-molecular-weight bacteriocins resembling bacteriophage tails. 30-84 is a plant growth-promoting rhizobacterial (PGPR) strain that produces two distinct R-tailocin particles with different killing spectra. The two R-tailocins have different evolutionary histories but are released by the same lysis cassette.

View Article and Find Full Text PDF

For a three-dimensional structure to spontaneously self-assemble from many identical components, the steps on the pathway must be kinetically accessible. Many virus capsids are icosahedral and assembled from hundreds of identical proteins, but how they navigate the assembly process is poorly understood. Capsid assembly is thought to involve stepwise addition of subunits to a growing capsid fragment.

View Article and Find Full Text PDF

Application of Brassicaceous seed meal (BSM) is a promising biologically based disease-control practice but BSM could directly and indirectly also affect the non-target bacterial communities, including the beneficial populations. Understanding the bacterial response to BSM at the community level is of great significance for directing plant disease management through the manipulation of resident bacterial communities. wilt is a devastating disease on pepper.

View Article and Find Full Text PDF

Phenazines are bacterial secondary metabolites and play important roles in the antagonistic activity of the biological control strain P. chlororaphis 30-84 against take-all disease of wheat. The expression of the P.

View Article and Find Full Text PDF

30-84 is a biological control agent selected for its ability to suppress diseases caused by fungal pathogens. 30-84 produces three phenazines: phenazine-1-carboxylic acid (PCA), 2-hydroxy-phenazine-1-carboxylic acid (2OHPCA) and a small amount of 2-hydroxy-phenazine (2OHPHZ), and these are required for fungal pathogen inhibition and wheat rhizosphere competence. The two, 2-hydroxy derivatives are produced from PCA via the activity of a phenazine-modifying enzyme encoded by .

View Article and Find Full Text PDF

Background: Transcriptomic analyses were performed to compare the molecular responses of two potato varieties previously shown to differ in the severity of disease symptoms due to infection by "Candidatus Liberibacter solanacearum" (Lso), the causative agent of Zebra Chip in potato. A factorial design utilizing the two varieties and psyllids either harboring Lso or without bacteria was used to discriminate varietal responses to pathogen infection versus psyllid feeding. Plant response was determined from leaf samples 3 weeks after infection.

View Article and Find Full Text PDF

Understanding capsid assembly is important because of its role in virus lifecycles and in applications to drug discovery and nanomaterial development. Many virus capsids are icosahedral, and assembly is thought to occur by the sequential addition of capsid protein subunits to a nucleus, with the final step completing the icosahedron. Almost nothing is known about the final (completion) step because the techniques usually used to study capsid assembly lack the resolution.

View Article and Find Full Text PDF

The nonculturable bacterium 'Candidatus Liberibacter solanacearum' is the causative agent of zebra chip disease in potato. Computational analysis of the 'Ca. L.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) core protein is a model system for studying assembly and disassembly of icosahedral structures. Controlling disassembly will allow re-engineering the 120 subunit HBV capsid, making it a molecular breadboard. We examined removal of subunits from partially crosslinked capsids to form stable incomplete particles.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionioipd5gmehplea7to4nt7o6iplh9us9b): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once