Biol Psychiatry Glob Open Sci
January 2024
Background: There is a growing importance for environmental contributions to psychiatric disorders and understanding the impact of the exposome (i.e., pollutants and toxins).
View Article and Find Full Text PDFThere is a growing importance for environmental contributions to psychiatric disorders and understanding the impact of the exposome (i.e., pollutants and toxins).
View Article and Find Full Text PDFFacial dysmorphology is a hallmark of 22q11.2 deletion syndrome (22q11DS). Nearly all affected individuals have facial features characteristic of the syndrome: a vertically long face with broad nasal bridge, narrow palpebral fissures and mild micrognathia, sometimes accompanied by facial skeletal and oropharyngeal anomalies.
View Article and Find Full Text PDFWe defined a temporally and transcriptionally divergent precursor cohort in the medial olfactory epithelium (OE) shortly after it differentiates as a distinct tissue at mid-gestation in the mouse. This temporally distinct population of Ascl1+ cells in the dorsomedial OE is segregated from Meis1+/Pax7+ progenitors in the lateral OE, and does not appear to be generated by Pax7+ lateral OE precursors. The medial Ascl1+ precursors do not yield a substantial number of early-generated ORNs.
View Article and Find Full Text PDFBackground: Vitamin A regulates patterning of the pharyngeal arches, cranial nerves, and hindbrain that are essential for feeding and swallowing. In the LgDel mouse model of 22q11.2 deletion syndrome (22q11DS), morphogenesis of multiple structures involved in feeding and swallowing are dysmorphic.
View Article and Find Full Text PDFUnder-connectivity between cerebral cortical association areas may underlie cognitive deficits in neurodevelopmental disorders, including the 22q11.2 deletion syndrome (22q11DS). Using the LgDel 22q11DS mouse model, we assessed cellular, molecular, and developmental origins of under-connectivity and its consequences for cognitive function.
View Article and Find Full Text PDFWe compared apparent origins, cellular diversity and regulation of initial axon growth for differentiating cranial sensory neurons. We assessed the molecular and cellular composition of the developing olfactory and otic placodes, and cranial sensory ganglia to evaluate contributions of ectodermal placode versus neural crest at each site. Special sensory neuron populations-the olfactory and otic placodes, as well as those in vestibulo-acoustic ganglion- are entirely populated with cells expressing cranial placode-associated, rather than neural crest-associated markers.
View Article and Find Full Text PDFRanbp1, a Ran GTPase-binding protein implicated in nuclear/cytoplasmic trafficking, is included within the DiGeorge/22q11.2 Deletion Syndrome (22q11.2 DS) critical region associated with behavioral impairments including autism and schizophrenia.
View Article and Find Full Text PDFWe asked whether key morphogenetic signaling pathways interact with 22q11 gene dosage to modulate the severity of cranial or cardiac anomalies in DiGeorge/22q1 deletion syndrome (22q11DS). Sonic hedgehog (Shh) and retinoic acid (RA) signaling is altered in the brain and heart-clinically significant 22q11DS phenotypic sites-in LgDel mouse embryos, an established 22q11DS model. LgDel embryos treated with cyclopamine, an Shh inhibitor, or carrying mutations in Gli3(Xtj), an Shh-signaling effector, have morphogenetic anomalies that are either not seen, or seen at significantly lower frequencies in control or single-mutant embryos.
View Article and Find Full Text PDF