Background: Ultra deep sequencing is of increasing use not only in research but also in diagnostics. For implementation of ultra deep sequencing assays in clinical laboratories for routine diagnostics, intra- and inter-laboratory testing are of the utmost importance.
Methods: A multicenter study was conducted to validate an updated assay design for 454 Life Sciences' GS FLX Titanium system targeting protease/reverse transcriptase (RTP) and env (V3) regions to identify HIV-1 drug-resistance mutations and determine co-receptor use with high sensitivity.
Low-frequency HIV variants possessing resistance mutations against non‑nucleoside reverse transcriptase inhibitors (NNRTI), especially at HIV reverse transcriptase (RT) amino acid (aa) positions K103 and Y181, have been shown to adversely affect treatment response. Therapeutic failure correlates with both the mutant viral variant frequency and the mutational load. We determined the prevalence of NNRTI resistance mutations at several RT aa positions in viruses from 204 antiretroviral (ARV)-naïve HIV-infected individuals using deep sequencing, and examined the relationship between mutant variant frequency and mutational load for those variants.
View Article and Find Full Text PDFThe detection of mutant spectra within the viral quasispecies is critical for therapeutic management of HIV-1 infections. Routine clinical application of ultrasensitive genotyping requires reproducibility and concordance within and between laboratories. The goal of the study was to evaluate a new protocol on HIV-1 drug resistance testing by 454 ultra-deep pyrosequencing (454-UDS) in an international multicenter study.
View Article and Find Full Text PDFBroadly neutralizing HIV antibodies (bnAbs) are typically highly somatically mutated, raising doubts as to whether they can be elicited by vaccination. We used 454 sequencing and designed a novel phylogenetic method to model lineage evolution of the bnAbs PGT121-134 and found a positive correlation between the level of somatic hypermutation (SHM) and the development of neutralization breadth and potency. Strikingly, putative intermediates were characterized that show approximately half the mutation level of PGT121-134 but were still capable of neutralizing roughly 40-80% of PGT121-134 sensitive viruses in a 74-virus panel at median titers between 15- and 3-fold higher than PGT121-134.
View Article and Find Full Text PDFBackground: It has been reported that treatment-naive individuals infected with HIV-1 subtype C may be more likely to harbour viral variants possessing a K65R reverse transcriptase gene mutation. The objectives of this study were to determine the prevalence of low-level K65R variants within different HIV-1 subtypes and to assess the effects of antiretroviral exposure on K65R variant levels.
Methods: Treatment-naive individuals infected with different HIV-1 subtypes were genotyped by ultra-deep sequencing.
Women with bacterial vaginosis (BV) have a higher risk of HIV transmission but the cause of risk is unknown. Dendritic cells (DC) are implicated in transmission of HIV and we previously observed that DC mature when exposed to mucosal fluid from women with BV. We hypothesized that maturation of DC by BV mucosal fluid would enhance DC-mediated trans-infection of HIV.
View Article and Find Full Text PDFDendritic cells (DC) at mucosal surfaces mature when exposed to "danger" signals such as LPS. Bacterial vaginosis (BV) is a prevalent alteration of the vaginal bacterial flora associated with preterm childbirth and increased risk for HIV acquisition. We examined the effect of mucosal fluid from women with BV or healthy flora on DC function.
View Article and Find Full Text PDF