Preclinical work supports a role for the peripheral chemoreceptors in the progression of cardiovascular and metabolic pathologies. In the present study, we examined peripheral chemosensitivity in adults with type 2 diabetes (T2D) and the contribution of the peripheral chemoreceptors to resting cardiovascular and metabolic control. We hypothesized that: (1) adults with T2D exhibit exaggerated peripheral chemoreflex sensitivity; (2) the peripheral chemoreceptors contribute to cardiovascular dysfunction in T2D; and (3) attenuation of peripheral chemoreceptor activity improves glucose tolerance in T2D.
View Article and Find Full Text PDFRepeat exposures to low oxygen (intermittent hypoxia, IH), like that observed in sleep apnea, elicit increases in muscle sympathetic nerve activity (MSNA) and blood pressure (BP) in men. Endothelin (ET) receptor antagonists can attenuate the sympathetic and BP response to IH in rodents; whether these data translate to humans are unclear. We hypothesized that ET-receptor antagonism would ameliorate any rise in MSNA and BP following acute IH in humans.
View Article and Find Full Text PDFOxidative stress caused by routine physical stressors may negatively impact the performance of equine athletes; thus, the present study identifies oxidative biomarkers in the blood plasma of exercising horses. Stock-type horses were subject to a standardized moderate-intensity exercise protocol 3 times per week for 8 wk. Exercise protocol followed NRC guidelines consisting of 30% walk, 55% trot, and 15% canter, with a target heart rate (HR) of 90 BPM.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
December 2021
Sex-related differences in respiratory modulation of sympathetic activity have been observed in rodent models of sleep apnea [intermittent hypoxia (IH)]. In light of sex disparities in the respiratory response to acute IH in humans as well as changes in respiratory modulation of muscle sympathetic nerve activity (MSNA) in clinical sleep apnea, we examined sex-related differences in respiratory modulation of MSNA following acute IH. We hypothesized that respiratory modulation of MSNA would be altered in both male and female participants after IH; however, the respiratory patterning of MSNA following IH would be sex specific.
View Article and Find Full Text PDFNew Findings: What is the central question of this study? Sympathetically mediated vasoconstriction is preserved during hypoxaemia in humans, but our understanding of vascular control comes from predominantly male cohorts. We tested the hypothesis that young women attenuate sympathetically mediated vasoconstriction during steady-state hypoxaemia, whereas men do not? What is the main finding and its importance? Sympathetically mediated vasoconstriction is preserved or even enhanced during steady-state hypoxia in young men, and the peripheral vascular response to sympathetic activation during hypoxaemia is attenuated in young women. These data advance our understanding of sex-related differences in hypoxic vascular control.
View Article and Find Full Text PDFBackground: Fever is a common symptom in children presenting to the Emergency Department (ED). We aimed to describe the epidemiology of systemic viral infections and their predictive values for excluding serious bacterial infections (SBIs), including bacteremia, meningitis and urinary tract infections (UTIs) in children presenting to the ED with suspected systemic infections.
Methods: We enrolled children who presented to the ED with suspected systemic infections who had blood cultures obtained at seven healthcare facilities.
Am J Physiol Regul Integr Comp Physiol
December 2020
Repetitive hypoxic apneas, similar to those observed in sleep apnea, result in resetting of the sympathetic baroreflex to higher blood pressures (BP). This baroreflex resetting is associated with hypertension in preclinical models of sleep apnea (intermittent hypoxia, IH); however, the majority of understanding comes from males. There are data to suggest that female rats exposed to IH do not develop high BP.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
May 2020
We examined the effect of acute intermittent hypoxia (IH) on sympathetic neural firing patterns and the role of the carotid chemoreceptors. We hypothesized exposure to acute IH would increase muscle sympathetic nerve activity (MSNA) via an increase in action potential (AP) discharge rates and within-burst firing. We further hypothesized any change in discharge patterns would be attenuated during acute chemoreceptor deactivation (hyperoxia).
View Article and Find Full Text PDFWe sought to examine the effect of varying chemoreflex stress on sympathetic neural recruitment strategies during end-expiratory apnea. We hypothesized that increases in the firing frequency and probability of low-threshold axons at the asphyxic "break point" would be exaggerated during hypoxia and attenuated during hyperoxia. Multiunit muscle sympathetic nervous system activity (MSNA) (peroneal nerve microneurography) was measured in 10 healthy male subjects (31 ± 2 yr, 25 ± 1 kg/m).
View Article and Find Full Text PDFIntracellular quiescent reservoirs of uropathogenic Escherichia coli (UPEC), which can seed the bladder mucosa during the acute phase of a urinary tract infection (UTI), are protected from antibiotic treatments and are extremely difficult to eliminate. These reservoirs are a potential source for recurrent UTIs that affect millions annually. Here, using murine infection models and the bladder cell exfoliant chitosan, we demonstrate that intracellular UPEC populations shift within the stratified layers of the urothelium during the course of a UTI.
View Article and Find Full Text PDFStrains of uropathogenic Escherichia coli (UPEC) are the primary cause of urinary tract infections, representing one of the most widespread and successful groups of pathogens on the planet. To colonize and persist within the urinary tract, UPEC must be able to sense and respond appropriately to environmental stresses, many of which can compromise the bacterial envelope. The Cpx two-component envelope stress response system is comprised of the inner membrane histidine kinase CpxA, the cytosolic response regulator CpxR, and the periplasmic auxiliary factor CpxP.
View Article and Find Full Text PDFThe multivesicular body (MVB) pathway delivers membrane proteins to the lumen of the vacuole/lysosome for degradation. The resulting amino acids are transported to the cytoplasm for reuse in protein synthesis. Our study shows that this amino acid recycling system plays an essential role in the adaptation of cells to starvation conditions.
View Article and Find Full Text PDFTelomere end binding proteins from diverse organisms use various forms of an ancient protein structure to recognize and bind with single-strand DNA found at the ends of telomeres. To further understand the biochemistry and evolution of these proteins, we have characterized the DNA binding properties of the telomere end binding protein from Euplotes crassus (EcTEBP). EcTEBP and its predicted amino-terminal DNA-binding domain, EcTEBP-N, were expressed in Escherichia coli and purified.
View Article and Find Full Text PDFBackground: The study evaluated the efficacy of recombinant human antithrombin (rhAT) for restoring heparin responsiveness in heparin resistant patients undergoing cardiac surgery.
Methods: This was a multicenter, randomized, double-blind, placebo-controlled study in heparin-resistant patients undergoing cardiac surgery with cardiopulmonary bypass. Heparin resistance was diagnosed when the activated clotting time was less than 480 s after 400 U/kg heparin.