Inland recreational fishing is primarily considered a leisure-driven activity in freshwaters, yet its harvest can contribute to food systems. Here we estimate that the harvest from inland recreational fishing equates to just over one-tenth of all reported inland fisheries catch globally. The estimated total consumptive use value of inland recreational fish destined for human consumption may reach US$9.
View Article and Find Full Text PDFA common goal among fisheries science professionals, stakeholders, and rights holders is to ensure the persistence and resilience of vibrant fish populations and sustainable, equitable fisheries in diverse aquatic ecosystems, from small headwater streams to offshore pelagic waters. Achieving this goal requires a complex intersection of science and management, and a recognition of the interconnections among people, place, and fish that govern these tightly coupled socioecological and sociotechnical systems. The World Fisheries Congress (WFC) convenes every four years and provides a unique global forum to debate and discuss threats, issues, and opportunities facing fish populations and fisheries.
View Article and Find Full Text PDFFisheries are highly complex social-ecological systems that often face 'wicked' problems from unsustainable resource management to climate change. Addressing these challenges requires transdisciplinary approaches that integrate perspectives across scientific disciplines and knowledge systems. Despite widespread calls for transdisciplinary fisheries research (TFR), there are still limitations in personal and institutional capacity to conduct and support this work to the highest potential.
View Article and Find Full Text PDFInland recreational fisheries, found in lakes, rivers, and other landlocked waters, are important to livelihoods, nutrition, leisure, and other societal ecosystem services worldwide. Although recreationally-caught fish are frequently harvested and consumed by fishers, their contribution to food and nutrition has not been adequately quantified due to lack of data, poor monitoring, and under-reporting, especially in developing countries. Beyond limited global harvest estimates, few have explored species-specific harvest patterns, although this variability has implications for fisheries management and food security.
View Article and Find Full Text PDFDespite contributing to healthy diets for billions of people, aquatic foods are often undervalued as a nutritional solution because their diversity is often reduced to the protein and energy value of a single food type ('seafood' or 'fish'). Here we create a cohesive model that unites terrestrial foods with nearly 3,000 taxa of aquatic foods to understand the future impact of aquatic foods on human nutrition. We project two plausible futures to 2030: a baseline scenario with moderate growth in aquatic animal-source food (AASF) production, and a high-production scenario with a 15-million-tonne increased supply of AASFs over the business-as-usual scenario in 2030, driven largely by investment and innovation in aquaculture production.
View Article and Find Full Text PDFRecreational fisheries contribute substantially to the sociocultural and economic well-being of coastal and riparian regions worldwide, but climate change threatens their sustainability. Fishery managers require information on how climate change will impact key recreational species; however, the absence of a global assessment hinders both directed and widespread conservation efforts. In this study, we present the first global climate change vulnerability assessment of recreationally targeted fish species from marine and freshwater environments (including diadromous fishes).
View Article and Find Full Text PDFFishes faced with novel thermal conditions often modify physiological functioning to compensate for elevated temperatures. This physiological plasticity (thermal acclimation) has been shown to improve metabolic performance and extend thermal limits in many species. Adjustments in cardiorespiratory function are often invoked as mechanisms underlying thermal plasticity because limitations in oxygen supply have been predicted to define thermal optima in fishes; however, few studies have explicitly linked cardiorespiratory plasticity to metabolic compensation.
View Article and Find Full Text PDFIncreasing water temperatures owing to anthropogenic climate change are predicted to negatively impact the aerobic metabolic performance of aquatic ectotherms. Specifically, it has been hypothesized that thermal increases result in reductions in aerobic scope (AS), which lead to decreases in energy available for essential fitness and performance functions. Consequences of warming are anticipated to be especially severe for warm-adapted tropical species as they are thought to have narrow thermal windows and limited plasticity for coping with elevated temperatures.
View Article and Find Full Text PDF