Publications by authors named "Elizabeth Noton"

Both casein kinase 1 delta (CK1delta) and epsilon (CK1epsilon) phosphorylate core clock proteins of the mammalian circadian oscillator. To assess the roles of CK1delta and CK1epsilon in the circadian clock mechanism, we generated mice in which the genes encoding these proteins (Csnk1d and Csnk1e, respectively) could be disrupted using the Cre-loxP system. Cre-mediated excision of the floxed exon 2 from Csnk1d led to in-frame splicing and production of a deletion mutant protein (CK1delta(Delta2)).

View Article and Find Full Text PDF

The circadian clock mechanism in the mouse is composed of interlocking transcriptional feedback loops. Two transcription factors, CLOCK and BMAL1, are believed to be essential components of the circadian clock. We have used the Cre-LoxP system to generate whole-animal knockouts of CLOCK and evaluated the resultant circadian phenotypes.

View Article and Find Full Text PDF

Survivin is a protein with proposed roles in cell division and apoptosis. Transcripts encoding splice variants of human survivin have been described and their expression correlated with cancer progression. As survivin forms homodimers in vitro, it has been suggested that these isoforms could interfere with wild type function by forming heterodimers.

View Article and Find Full Text PDF

Biological rhythms in mammals are driven by a central circadian clock located in the suprachiasmatic nucleus (SCN). At the molecular level the biological clock is based on the rhythmic expression of clock genes. Two basic helix-loop-helix (bHLH)/PAS-containing transcription factors, CLOCK and BMAL1 (MOP3), provide the basic drive to the system by activating transcription of negative regulators through E box enhancer elements.

View Article and Find Full Text PDF