Publications by authors named "Elizabeth Moreno-Arriola"

A high-glucose diet (HGD) is associated with the development of metabolic diseases that decrease life expectancy, including obesity and type-2 diabetes (T2D); however, the mechanism through which a HGD does so is still unclear. Autophagy, an evolutionarily conserved mechanism, has been shown to promote both cell and organismal survival. The goal of this study was to determine whether exposure of to a HGD affects autophagy and thus contributes to the observed lifespan reduction under a HGD.

View Article and Find Full Text PDF

Epilepsy is a neuronal disease that affects up to 70 million people worldwide. The development of effective therapies to combat childhood epilepsy requires early biomarkers. Here, we performed a whole-genome microarray analysis in blood cells to identify genes differentially expressed between epileptic and epileptic valproic acid (VPA)-treated children versus normal children to obtain information about the gene expression to help us to understand genetic aspects of this disease.

View Article and Find Full Text PDF

Chronic exposure to elevated glucose levels leads to fatty acid accumulation, which promotes the development of metabolic diseases such as obesity and type 2 diabetes. MXL-3 is a conserved transcriptional factor that modulates the inhibition of lipolysis in . However, the role of MXL-3 in lipid metabolism during nutrient excess remains unknown.

View Article and Find Full Text PDF

Thiamine is one of several essential cofactors for ATP generation. Its deficiency, like in beriberi and in the Wernicke-Korsakoff syndrome, has been studied for many decades. However, its mechanism of action is still not completely understood at the cellular and molecular levels.

View Article and Find Full Text PDF

Cellular energy regulation relies on complex signaling pathways that respond to fuel availability and metabolic demands. Dysregulation of these networks is implicated in the development of human metabolic diseases such as obesity and metabolic syndrome. In Caenorhabditis elegans the AMP-activated protein kinase, AAK, has been associated with longevity and stress resistance; nevertheless its precise role in energy metabolism remains elusive.

View Article and Find Full Text PDF

Caenorhabditis elegans is a powerful model organism that is invaluable for experimental research because it can be used to recapitulate most human diseases at either the metabolic or genomic level in vivo. This organism contains many key components related to metabolic and oxidative stress networks that could conceivably allow us to increase and integrate information to understand the causes and mechanisms of complex diseases. Oxidative stress is an etiological factor that influences numerous human diseases, including diabetes.

View Article and Find Full Text PDF

We recently showed that in biotin starvation in yeast Saccharomyces cerevisiae, nematode Caenorhabditis elegans and rat Rattus norvegicus, despite abundant glucose provision, the expression of genes for glucose utilization and lipogenesis were lowered, and for fatty acid β-oxidation and gluconeogenesis were raised, and glycolytic/fermentative flow was reduced. This work explored the mechanisms of these results. We show that they are associated with ATP deficit and activation of the energy stress sensor AMP kinase (AMPK; Snf1 in yeast).

View Article and Find Full Text PDF

Hexokinase-catalyzed glucose phosphorylation is the first and crucial step for glucose utilization. Although there are reported studies on glucose metabolism in commercial species, knowledge on it is almost nil in zebrafish (Danio rerio), an important model organism for biological research. We have searched these fish hexokinase genes by BLAST analysis; determined their expression in liver, muscle, brain and heart; measured their response to fasting and glucose administration; and performed homology sequences studies to glimpse their evolutionary history.

View Article and Find Full Text PDF