Publications by authors named "Elizabeth Merritt"

Noise is a consistent problem for x-ray transmission images of High-Energy-Density (HED) experiments because it can significantly affect the accuracy of inferring quantitative physical properties from these images. We consider experiments that use x-ray area backlighting to image a thin layer of opaque material within a physics package to observe its hydrodynamic evolution. The spatial variance of the x-ray transmission across the system due to changing opacity serves as an analog for measuring density in this evolving layer.

View Article and Find Full Text PDF

Despite substantial recent advances in treatment, multiple myeloma (MM) remains an incurable disease, with a shortage of treatment options for patients with high-risk disease, warranting the need for novel therapeutic targets and treatment approaches. Threonine and tyrosine kinase (TTK), also known as monopolar spindle 1 (MPS1), is a kinase essential for the mitotic spindle checkpoint whose expression correlates to unfavorable prognosis in several cancers. Here, we report the importance of TTK in MM, and the effects of the TTK inhibitor OSU-13.

View Article and Find Full Text PDF

Implosion symmetry is a key requirement in achieving a robust burning plasma in inertial confinement fusion experiments. In double-shell capsule implosions, we are interested in the shape of the inner shell as it pushes on the fuel. Shape analysis is a popular technique for studying said symmetry during implosion.

View Article and Find Full Text PDF

Purpose: Pregnant patients with substance use disorders (SUDs) may experience stigma and implicit and explicit bias from health care professionals when seeking prenatal care. This study explored the perceptions of health care professionals caring for pregnant women with SUDs and examined changes in their perceptions over time following attendance at an educational conference about SUDs.

Study Design And Methods: Evidence-based education was presented to health care professionals at a conference to reinforce the complex needs of pregnant women with SUDs.

View Article and Find Full Text PDF

In inertial confinement fusion (ICF), x-ray radiography is a critical diagnostic for measuring implosion dynamics, which contain rich three-dimensional (3D) information. Traditional methods for reconstructing 3D volumes from 2D radiographs, such as filtered backprojection, require radiographs from at least two different angles or lines of sight (LOS). In ICF experiments, the space for diagnostics is limited, and cameras that can operate on fast timescales are expensive to implement, limiting the number of projections that can be acquired.

View Article and Find Full Text PDF

A multi-chord fiber-coupled interferometer is being used to make time-resolved density measurements of supersonic argon plasma jets on the Plasma Liner Experiment. The long coherence length of the laser (>10 m) allows signal and reference path lengths to be mismatched by many meters without signal degradation, making for a greatly simplified optical layout. Measured interferometry phase shifts are consistent with a partially ionized plasma in which both positive and negative phase shift values are observed depending on the ionization fraction.

View Article and Find Full Text PDF

This paper describes a 561 nm laser heterodyne interferometer that provides time-resolved measurements of line-integrated plasma electron density within the range of 10(15)-10(18) cm(-2). Such plasmas are produced by railguns on the plasma liner experiment, which aims to produce μs-, cm-, and Mbar-scale plasmas through the merging of 30 plasma jets in a spherically convergent geometry. A long coherence length, 320 mW laser allows for a strong, sub-fringe phase-shift signal without the need for closely matched probe and reference path lengths.

View Article and Find Full Text PDF

Smooth-particle applied mechanics (SPAM) provides several approaches to approximate solutions of the continuum equations for both fluids and solids. Though many of the usual formulations conserve mass, (linear) momentum, and energy, the angular momentum is typically not conserved by SPAM. A second difficulty with the usual formulations is that tensile stress states often exhibit an exponentially fast high-frequency short-wavelength instability, "tensile instability.

View Article and Find Full Text PDF