The photoluminescence properties of quantum dots (QDs) are often enhanced by eliminating surface trap states through chemical methods. Alternatively, a physical approach is presented here for improving photoluminescence purity in QDs by employing frequency-specific plasmon resonance coupling. Emitter-bound plasmonic hybrids are designed by electrostatically binding negatively charged QDs in water to positively charged gold nanoparticles having a thin polymer coating.
View Article and Find Full Text PDFThe brightness of an emitter can be enhanced by metal-enhanced fluorescence, wherein the excitonic dipole couples with the electromagnetic field of the surface plasmon. Herein, we experimentally map the landscape of photoluminescence enhancement (EF) of emitters in a plasmonic field as a function of the emitter-emitter separation, , and the emitter-plasmon distance, . We use Au nanoparticles overcoated with inert spacers as plasmonic systems and CdSe/ZnS quantum dots (QDs) as an emitter bearing opposite surface charges.
View Article and Find Full Text PDFDespite the excellent optoelectronic properties of halide perovskites, the ionic and electronic defects adversely affect the stability and durability of perovskites and their devices. These defects, intrinsic or produced by environmental factors such as oxygen, moisture, or light, not only cause chemical reactions that disintegrate the structure and properties of perovskites but also induce undesired photoluminescence blinking to perovskite quantum dots and nanocrystals. Blinking is also caused by the nonradiative Auger processes in the photocharged quantum dots or nanocrystals.
View Article and Find Full Text PDFSemiconductor quantum dots with stable photoluminescence are necessary for next generation optoelectronic and photovoltaic devices. Photoluminescence intensity fluctuations of cadmium and lead chalcogenide quantum dots have been extensively investigated since the first observation of blinking in CdSe nanocrystals in 1996. In a quantum dot, blinking originates from stochastic photocharging, nonradiative Auger recombination, and delayed neutralization.
View Article and Find Full Text PDFHeterojunction nanorods having dissimilar semiconductors possess charge transfer (CT) properties and are proposed as active elements in optoelectronic systems. Herein, we describe the synthetic methodologies for controlling the charge carrier recombination dynamics in CdSe-CdTe heterojunction nanorods through the precise growth of CdTe segment from one of the tips of CdSe nanorods. The location of heterojunction was established through a point-by-point collection of the energy-dispersive X-ray spectra using scanning transmission electron microscopy.
View Article and Find Full Text PDF