Solid-state electrolytes, particularly polymer/ceramic composite electrolytes, are emerging as promising candidates for lithium-ion batteries due to their high ionic conductivity and mechanical flexibility. The interfaces that arise between the inorganic and organic materials in these composites play a crucial role in ion transport mechanisms. While lithium ions are proposed to diffuse across or parallel to the interface, few studies have directly examined the quantitative impact of these pathways on ion transport and little is known about how they affect the overall conductivity.
View Article and Find Full Text PDFThe complex non-centrosymmetric and chiral nature of helical structures endow materials that possess such motifs with unusual properties. However, despite their ubiquity in biological and organic systems, there is a severe lack of inorganic crystals that display helicity in extended lattices, where these unusual properties are expected to be most pronounced. Here, we report a new inorganic helical structure, gallium sulfur iodide (GaSI), within the exfoliable class of III-VI-VII (1:1:1) one-dimensional (1D) van der Waals (vdW) crystals.
View Article and Find Full Text PDFSignificanceThe mature capsids of HIV-1 are transiently stable complexes that self-assemble around the viral genome during maturation, and uncoat to release preintegration complexes that archive a double-stranded DNA copy of the virus in the host cell genome. However, a detailed view of how HIV cores rupture remains lacking. Here, we elucidate the physical properties involved in capsid rupture using a combination of large-scale all-atom molecular dynamics simulations and cryo-electron tomography.
View Article and Find Full Text PDFSpin defects in wide-bandgap semiconductors provide a promising platform to create qubits for quantum technologies. Their synthesis, however, presents considerable challenges, and the mechanisms responsible for their generation or annihilation are poorly understood. Here, we elucidate spin defect formation processes in a binary crystal for a key qubit candidate-the divacancy complex (VV) in silicon carbide (SiC).
View Article and Find Full Text PDFIn heterogeneous catalysis, free energy profiles of reactions govern the mechanisms, rates, and equilibria. Energetics are conventionally computed using the harmonic approximation (HA), which requires determination of critical states Here, we use neural networks to efficiently sample and directly calculate the free energy surface (FES) of a prototypical heterogeneous catalysis reaction-the dissociation of molecular nitrogen on ruthenium-at density-functional-theory-level accuracy. We find that the vibrational entropy of surface atoms, often neglected in HA for transition metal catalysts, contributes significantly to the reaction barrier.
View Article and Find Full Text PDFInositol hexakisphosphates (IP) are cellular cofactors that promote the assembly of mature capsids of HIV. These negatively charged molecules coordinate an electropositive ring of arginines at the center of pores distributed throughout the capsid surface. Kinetic studies indicate that the binding of IP increases the stable lifetimes of the capsid by several orders of magnitude from minutes to hours.
View Article and Find Full Text PDFJ Chem Theory Comput
August 2019
In an adiabatic mixed quantum-classical simulation, the avoided crossing of weakly coupled eigenstates can lead to unphysical discontinuities in wave function dynamics, otherwise known as the trivial crossing problem. A standard solution to the trivial crossing problem eliminates spatial discontinuities in wave function dynamics by imposing changes to the eigenstate of the wave function. In this paper, we show that this solution has the side effect of introducing transient discontinuities in the nodal symmetry of the wave function.
View Article and Find Full Text PDFIn semiconductors, increasing mobility with decreasing temperature is a signature of charge carrier transport through delocalized bands. Here, we show that this behavior can also occur in nanocrystal solids due to temperature-dependent structural transformations. Using a combination of broadband infrared transient absorption spectroscopy and numerical modeling, we investigate the temperature-dependent charge transport properties of well-ordered PbS quantum dot (QD) solids.
View Article and Find Full Text PDFTraditional polymers are both electrically and thermally insulating. The development of electrically conductive polymers has led to novel applications such as flexible displays, solar cells, and wearable biosensors. As in the case of electrically conductive polymers, the development of polymers with high thermal conductivity would open up a range of applications in next-generation electronic, optoelectronic, and energy devices.
View Article and Find Full Text PDFThe measured low frequency vibrational energies of some quantum dots (QDs) deviate from the predictions of traditional elastic continuum models. Recent experiments have revealed that these deviations can be tuned by changing the ligands that passivate the QD surface. This observation has led to speculation that these deviations are due to a mass-loading effect of the surface ligands.
View Article and Find Full Text PDFIn this study, we investigated the inactivation efficacy of endospore-forming bacteria, Bacillus pumilus, irradiated by low-energy X-rays of different beam qualities. The different low-energy X-rays studied had cut-off energies of 50, 100 and 150 keV. Bacillus pumilus spores (in biological indicator strips) were irradiated at step doses between 6.
View Article and Find Full Text PDFEnergetic disorder in quantum dot solids adversely impacts charge carrier transport in quantum dot solar cells and electronic devices. Here, we use ultrafast transient absorption spectroscopy to show that homogeneously broadened PbS quantum dot arrays (σ:σ > 19:1, σ/kT < 0.4) can be realized if quantum dot batches are sufficiently monodisperse (δ ≲ 3.
View Article and Find Full Text PDFWe measure the temperature dependence of breathing-mode acoustic vibrations of semiconductor nanocrystals using low-frequency Raman spectroscopy. In CdSe core-only nanocrystals, the lowest-energy l = 0 mode red-shifts with increasing temperature by ∼5% between 77-300 K. Changes to the interatomic bond distances in the inorganic crystal lattice, with corresponding changes to the bulk modulus and density of the material, contribute to the observed energy shift but do not fully explain its magnitude across all nanocrystal sizes.
View Article and Find Full Text PDFRecent experimental and theoretical results have highlighted the surprisingly dominant role of acoustic phonons in regulating dynamic processes in nanocrystals. While it has been known for many years that acoustic phonon frequencies in nanocrystals depend on their size, strategies for tuning acoustic phonon energy at a given fixed size were not available. Here, we show that acoustic phonon frequencies in colloidal quantum dots (QDs) can be tuned through the choice of the surface ligand.
View Article and Find Full Text PDFRecent experiments aimed at probing the dynamics of excitons have revealed that semiconducting films composed of disordered molecular subunits, unlike expectations for their perfectly ordered counterparts, can exhibit a time-dependent diffusivity in which the effective early time diffusion constant is larger than that of the steady state. This observation has led to speculation about what role, if any, microscopic disorder may play in enhancing exciton transport properties. In this article, we present the results of a model study aimed at addressing this point.
View Article and Find Full Text PDFColloidal quantum dots (QDs) are promising materials for use in solar cells, light-emitting diodes, lasers, and photodetectors, but the mechanism and length of exciton transport in QD materials is not well understood. We use time-resolved optical microscopy to spatially visualize exciton transport in CdSe/ZnCdS core/shell QD assemblies. We find that the exciton diffusion length, which exceeds 30 nm in some cases, can be tuned by adjusting the inorganic shell thickness and organic ligand length, offering a powerful strategy for controlling exciton movement.
View Article and Find Full Text PDFThe electronic structure of transition metal oxides is frequently studied using density functional theory. Nonetheless, the electronic structure of VO3 has been found to be sensitive to the choice of functional. As a consequence, the basic question of whether or not the ground electronic state exhibits a Jahn-Teller distortion has yet to be resolved.
View Article and Find Full Text PDFModeling of electronic structure of molecules in electrostatic environments is of considerable relevance for surface-enhanced spectroscopy and molecular electronics. We have developed and implemented a novel approach to the molecular electronic structure in arbitrary electrostatic environments that is compatible with standard quantum chemical methods and can be applied to medium-sized and large molecules. The scheme denoted CheESE (chemistry in electrostatic environments) is based on the description of molecular electronic structure subject to a boundary condition on the system/environment interface.
View Article and Find Full Text PDF