Lesion-based targeting strategies underlie cancer precision medicine. However, biological principles - such as cellular senescence - remain difficult to implement in molecularly informed treatment decisions. Functional analyses in syngeneic mouse models and cross-species validation in patient datasets might uncover clinically relevant genetics of biological response programs.
View Article and Find Full Text PDFJ Biomed Nanotechnol
February 2016
According to the American Cancer Society, breast cancer is the second leading cause of cancer death in the US. Cancerous cells may have inadequate adhesions to the extracellular matrix and adjacent cells. Previous work has suggested that restoring these contacts may negate the cancer phenotype.
View Article and Find Full Text PDFUnlabelled: Triple negative breast cancer is exceptionally difficult to treat due to the lack of distinguishing biomarkers for drug targeting. An alternative approach based on recent data indicates that these cells may be more susceptible to mechanical influences, such as alterations in the tumor stroma. Three dimensional collagen gels containing co-cultures of mesenchymal cells and MDA-MB-231 cancer cells were utilized to explore the effects of multi-walled nanotubes (MWNT) on cell contraction, invasion, viability, MMP-9 expression, and migration of breast cancer cells.
View Article and Find Full Text PDFPurpose: Silver nanoparticles (Ag NP) can generate heat upon exposure to infrared light. The in vitro response of breast cell lines to Ag NP, both with and without nanoparticle-induced heating was evaluated.
Materials And Methods: Ag NP heat generation, intracellular silver concentration, and cell viability of MDA-MB-231, MCF7, and MCF 10A breast cells with Ag NP alone, or after exposure to 0.
The photothermal efficiency of two similar organic nanomaterials, poly(3,4-ethylenedioxythiophene):poly(4-styrene-sulfonate) (PEDOT:PSS) nanoparticles and poly(3,4-ethylenedioxythiophene) (PEDOT) nanotubes, are compared. The PEDOT:PSS nanoparticles ranged from 100-200 nm in diameter, while the PEDOT nanotubes ranged from 200-400 nm in diameter and 4-10 microm in length. By changing the aspect ratio of the PEDOT nanomaterials from a spherical to a tubular shape, interesting differences in the optical and electronic properties of the materials were realized.
View Article and Find Full Text PDF