Hydrogen/deuterium exchange mass spectrometry (HDX-MS) previously elucidated the interactions between excipients and proteins for liquid granulocyte colony stimulating factor (G-CSF) formulations, confirming predictions made using computational structure docking. More recently, solid-state HDX mass spectrometry (ssHDX-MS) was developed for proteins in the lyophilized state. Deuterium uptake in ssHDX-MS has been shown for various proteins, including monoclonal antibodies, to be highly correlated with storage stability, as measured by protein aggregation and chemical degradation.
View Article and Find Full Text PDFThe effects of atomic layer (ALC) coating on physical properties and storage stability were examined in solid powders containing myoglobin, a model protein. Powders containing myoglobin and mannitol (1:1 w/w) were prepared by lyophilization or spray drying and subjected to aluminum oxide or silicon oxide ALC coating. Uncoated samples of these powders as well as coated and uncoated samples of myoglobin as received served as controls.
View Article and Find Full Text PDFLyophilization is a common unit operation in pharmaceutical manufacturing but is a prolonged vacuum drying process with poor energy utilization. Microwave-assisted vacuum drying has been investigated to accelerate the lyophilization process. However, the literature lacks methodical approaches that consider the lyophilizer, the lyophilizate, the microwave power uniformity, the resulting heat uniformity, and the scalability.
View Article and Find Full Text PDFInsulin forms amyloid fibrils under slightly destabilizing conditions, and B-chain residues are thought to play an important role in insulin fibrillation. Here, pulsed hydrogen-deuterium exchange mass spectrometry (HDX-MS), far-UV circular dichroism spectroscopy, thioflavin T (ThioT) fluorescence, turbidity, and soluble fraction measurements were used to monitor the kinetics and mechanisms of fibrillation of human insulin B-chain (INSB) in acidic solution (1 mg/mL, pH 4.5) under stressed conditions (40°C, continuous shaking).
View Article and Find Full Text PDFN-terminal glutamate can cyclize to form pyroglutamate (pGlu) in pharmaceutically relevant peptides and proteins. The reaction occurs nonenzymatically during storage for monoclonal antibodies and shows a strong 'pH' dependence in solution, but the solid-state reaction has not been studied in detail. This work investigates the effect of 'pH' and buffer species on pGlu formation for a model peptide (EVQLVESGGGLVQPGGSLR) in lyophilized solids and in solution.
View Article and Find Full Text PDFMannitol, leucine, and trehalose have been widely used in spray-dried formulations, especially for inhalation formulations. The individual contribution of these excipients on protein physical stability in spray-dried solids was studied here using bovine serum albumin (BSA) as a model protein. The spray-dried solids were characterized with scanning electron microscopy, powder X-ray diffraction, and solid-state Fourier-transform infrared spectroscopy to analyze particle morphology, crystallinity, and secondary structure change, respectively.
View Article and Find Full Text PDFLyophilized powders containing myoglobin and various excipients were subjected to ssHDX-MS at different temperatures and DO vapor activity (RH). Deuterium incorporation was fitted to a bi-exponential association model for each formulation and the dependence of regression parameters on temperature and RH was evaluated. Data fitted best to a simplified model in which the slow exponential term was considered invariant with temperature and RH while the fast exponential term retained its temperature and RH dependence.
View Article and Find Full Text PDFThis study aims to determine the impacts of drying method and excipient on changes in protein structure and physical stability of model protein solids. Protein solids containing one of two model proteins (lysozyme or myoglobin) were produced with or without excipients (sucrose or mannitol) using freeze drying or spray freeze drying (SFD). The protein powders were then characterized using solid-state Fourier transform infrared spectroscopy (ssFTIR), differential scanning calorimetry (DSC), circular dichroism spectrometry (CD), size exclusion chromatography (SEC), BET surface area measurements and solid-state hydrogen deuterium exchange with mass spectrometry (ssHDX-MS).
View Article and Find Full Text PDFSome therapeutic peptides self-assemble in solution to form ordered, insoluble, β-sheet-rich amyloid fibrils. This physical instability can result in reduced potency, cause immunogenic side effects, and limit options for formulation. Understanding the mechanisms of fibrillation is key to developing rational mitigation strategies.
View Article and Find Full Text PDFThe reversibility of solid-state hydrogen-deuterium exchange (ssHDX) and the effects of prehydration on the rate and extent of deuterium incorporation were evaluated using poly-d,l-alanine (PDLA) peptides colyophilized with various excipients. In prehydration studies, samples were equilibrated at a controlled relative humidity (6% or 11% RH) for 12 h and then transferred to corresponding DO humidity conditions (6% or 11% RD) for deuterium labeling. In amorphous samples, the rate and extent of deuterium incorporation were similar in prehydrated samples and controls not subjected to prehydration.
View Article and Find Full Text PDFThe effects of peptide secondary structure on the rate and extent of deuterium incorporation in solid-state hydrogen deuterium exchange mass spectrometry (ssHDX-MS) were assessed. Unstructured poly-d,l-alanine (PDLA) peptides, an α-helical model peptide (peptide A) and a β-sheet model peptide (peptide B), were co-lyophilized with various excipients. Peptide structures were confirmed in solution using circular dichroism (CD) spectroscopy and in the solid state with Fourier transform infrared (FTIR) spectroscopy.
View Article and Find Full Text PDFPurpose: The aim of this study is to determine the effects of saccharide-containing excipients on the surface composition of spray-dried protein formulations and their matrix heterogeneity.
Methods: Spray-dried formulations of myoglobin or bovine serum albumin (BSA) were prepared without excipient or with sucrose, trehalose, or dextrans. Samples were characterized by solid-state Fourier-transform infrared spectroscopy (ssFTIR), differential scanning calorimetry (DSC), size exclusion chromatography (SEC) and scanning electron microscopy (SEM).
Mol Pharm
November 2019
Solid-state hydrogen-deuterium exchange with mass spectrometry (ssHDX-MS) was evaluated as an analytical method to rapidly screen and select an optimal lyophilized fragment antigen binding protein (Fab) formulation and the optimal lyophilization cycle. ssHDX-MS in lyophilized Fab formulations, varying in stabilizer type and stabilizer/protein ratio, was conducted under controlled humidity and temperature. The extent of deuterium incorporation was measured using mass spectrometry and correlated with solid-state stress degradation at 50 °C as measured by size exclusion chromatography (SEC) and ion-exchange chromatography (IEC).
View Article and Find Full Text PDFDeuterium incorporation in solid-state hydrogen deuterium exchange with mass spectrometry (ssHDX-MS) has been correlated with protein aggregation on storage in sugar-based solid matrices. Here, the effects of sucrose, arginine and histidine buffer on the rate of aggregation of a lyophilized monoclonal antibody (mAb) were assessed using design of experiments (DoE) and response surface methodology. Lyophilized formulations were characterized using ssHDX-MS and Fourier transform infrared spectroscopy (ssFTIR) to assess potential correlation with stability in solid state.
View Article and Find Full Text PDFPowders containing one of four model proteins (myoglobin, bovine serum albumin, lysozyme, β-lactoglobulin) were formulated with either sucrose, trehalose, or mannitol and dried using lyophilization or spray-drying. The powders were characterized using solid-state Fourier transform infrared spectroscopy (ssFTIR), solid-state fluorescence spectroscopy, differential scanning calorimetry (DSC) and solid-state hydrogen/deuterium exchange mass spectrometry (ssHDX-MS). ssFTIR and fluorescence spectroscopy identified minor structural differences among powders with different excipients and drying methods for some proteins.
View Article and Find Full Text PDFSolid-state hydrogen-deuterium exchange mass spectrometry (ssHDX-MS) has been developed to study proteins in amorphous solids, but the relative contributions of protein structure and protein-matrix interactions to exchange are not known. In this work, short unstructured poly-d,l-alanine (PDLA) peptides were colyophilized with sucrose, trehalose, mannitol, sodium chloride, or guanidine hydrochloride to quantify the contributions of protein-matrix interactions to deuterium uptake in ssHDX-MS in the absence of a higher order structure. Deuterium incorporation differed with the excipient type and relative humidity (RH) in DO, effects that were not observed in solution controls and are not described by the Linderstrom-Lang model for solution HDX.
View Article and Find Full Text PDFExcipients used in lyophilized protein drug products are often selected by a trial-and-error method, in part, because the analytical methods used to detect protein-excipient interactions in lyophilized solids are limited. In this study, photolytic labeling was used to probe interactions between salmon calcitonin (sCT) and excipients in lyophilized solids. Two diazirine-derived photo-excipients, photo-leucine (pLeu) and photo-glucosamine (pGlcN), were incorporated into lyophilized solids containing sCT, together with an unlabeled excipient (sucrose or histidine) at prelyophilization pH values from 6 to 9.
View Article and Find Full Text PDFInteractions of a lyophilized peptide with water and excipients in a solid matrix were explored using photolytic labeling. A model peptide "KLQ" (Ac-QELHKLQ-NHCH) was covalently labeled with NHS-diazirine (succinimidyl 4,4'-azipentanoate), and the labeled peptide (KLQ-SDA) was formulated and exposed to UV light in both solution and lyophilized solids. Solid samples contained the following excipients at a 1:400 molar ratio: sucrose, trehalose, mannitol, histidine, or arginine.
View Article and Find Full Text PDFJ Pharm Sci
February 2019
In this mini-review, the major types of photolytic labeling reagents are presented together with their reaction mechanisms. The applications of photolytic labeling in protein drug discovery and development are then discussed; these have expanded from studies of protein-protein interactions in vivo to protein-matrix interactions in lyophilized solids. The mini-review concludes with recommendations for further development of the approach, which include the need for new and more chemically diverse photo-reactive reagents and better understanding of the mechanisms of photolytic labeling reactions in various media.
View Article and Find Full Text PDFPeptide-matrix interactions in lyophilized solids were explored using photolytic labeling with reversed phase high performance liquid chromatography (rp-HPLC) and mass spectrometric (MS) analysis. A model peptide (Ac-QELHKLQ-NHCH) derived from salmon calcitonin was first labeled with a heterobifunctional cross-linker NHS-diazirine (succinimidyl 4,4'-azipentanoate; SDA) at Lys5 in solution, with ∼100% conversion. The SDA labeled peptide was then formulated with the following excipients at a 1:400 molar ratio and lyophilized: sucrose, trehalose, mannitol, histidine, arginine, urea, and NaCl.
View Article and Find Full Text PDFTherapeutic proteins are often formulated as lyophilized products to improve their stability and prolong shelf life. The stability of proteins in the solid-state has been correlated with preservation of native higher order structure and/or molecular mobility in the solid matrix, with varying success. In the studies reported here, we used solid-state hydrogen-deuterium exchange with mass spectrometric analysis (ssHDX-MS) to study the conformation of an IgG1 monoclonal antibody (mAb) in lyophilized solids and related the extent of ssHDX to aggregation during storage in the solid phase.
View Article and Find Full Text PDFPurpose: Lyophilization and spray drying are widely used to manufacture solid forms of therapeutic proteins. Lyophilization is used to stabilize proteins vulnerable to degradation in solution, whereas spray drying is mainly used to prepare inhalation powders or as an alternative to freezing for storing bulk drug substance. Both processes impose stresses that may adversely affect protein structure, stability and bioactivity.
View Article and Find Full Text PDF