Publications by authors named "Elizabeth M Snyder"

Mammalian male germ cell differentiation relies on complex RNA biogenesis events, many of which occur in non-membrane bound organelles termed RNA germ cell granules that are rich in RNA binding proteins (RBPs). Though known to be required for male germ cell differentiation, we understand little of the relationships between the numerous granule subtypes. ADAD2, a testis specific RBP, is required for normal male fertility and forms a poorly characterized granule in meiotic germ cells.

View Article and Find Full Text PDF

ADAD1 is a testis-specific RNA-binding protein expressed in post-meiotic spermatids whose loss leads to defective sperm and male infertility. However, the drivers of the Adad1 phenotype remain unclear. Morphological and functional analysis of Adad1 mutant sperm showed defective DNA compaction, abnormal head shaping, and reduced motility.

View Article and Find Full Text PDF

Dietary sulfur amino acid restriction (SAAR) protects against diet-induced obesity, extends healthspan, and coincides with an overall reduction in hepatic protein synthesis. To explore the underpinnings of SAAR-induced slowed growth and its impact on liver metabolism and proteostasis, we resolved changes in hepatic mRNA and protein abundances and compared synthesis rates of individual liver proteins. To achieve this, adult male mice were provided deuterium-labeled drinking water while freely consuming either a regular-fat or high-fat diet that was SAA restricted.

View Article and Find Full Text PDF

First reported in the 1800s, germ cell granules are small nonmembrane bound RNA-rich regions of the cytoplasm. These sites of critical RNA processing and storage in the male germ cell are essential for proper differentiation and development and are present in a wide range of species from Caenorhabditis elegans through mammals. Initially characterized by light and electron microscopy, more modern techniques such as immunofluorescence and genetic models have played a major role in expanding our understanding of the composition of these structures.

View Article and Find Full Text PDF

Male germ cells establish a unique heterochromatin domain, the XY-body, early in meiosis. How this domain is maintained through the end of meiosis and into post-meiotic germ cell differentiation is poorly understood. ADAD2 is a late meiotic male germ cell-specific RNA-binding protein, loss of which leads to post-meiotic germ cell defects.

View Article and Find Full Text PDF

Ruminants are major producers of meat and milk, thus managing their reproductive potential is a key element in cost-effective, safe, and efficient food production. Of particular concern, defects in male germ cells and female germ cells may lead to significantly reduced live births relative to fertilization. However, the underlying molecular drivers of these defects are unclear.

View Article and Find Full Text PDF

Quantifying differences in mRNA abundance is a classic approach to understand the impact of a given gene mutation on cell physiology. However, characterizing differences in the translatome (the whole of translated mRNAs) provides an additional layer of information particularly useful when trying to understand the function of RNA regulating or binding proteins. A number of methods for accomplishing this have been developed, including ribosome profiling and polysome analysis.

View Article and Find Full Text PDF

The testis transcriptome is exceptionally complex. Despite its complexity, previous testis transcriptome analyses relied on a reductive method for transcript identification, thus underestimating transcriptome complexity. We describe here a more complete testis transcriptome generated by combining Tuxedo, a reductive method, and spliced-RUM, a combinatorial transcript-building approach.

View Article and Find Full Text PDF

Adenosine to inosine (A-to-I) RNA editing occurs in a wide range of tissues and cell types and can be catalyzed by one of the two adenosine deaminase acting on double-stranded RNA enzymes, ADAR and ADARB1. Editing can impact both coding and noncoding regions of RNA, and in higher organisms has been proposed to function in adaptive evolution. Neither the prevalence of A-to-I editing nor the role of either ADAR or ADARB1 has been examined in the context of germ cell development in mammals.

View Article and Find Full Text PDF

Editing of the human and murine mRNA by APOBEC1, the catalytic enzyme of the protein complex that catalyzes C-to-U RNA editing, creates an internal stop codon within the APOB coding sequence, generating two protein isoforms. It has been long held that APOBEC1-mediated editing activity is dependent on the RNA binding protein A1CF. The function of A1CF in adult tissues has not been reported because a previously reported null allele displays embryonic lethality.

View Article and Find Full Text PDF
Article Synopsis
  • RNA editing involves changes to the RNA sequence after transcription, with many new targets being discovered recently.
  • The study focused on Diversity Outbred mice to explore how genetic diversity affects site-specific editing of RNA, revealing that different genetic factors influence C-to-U and A-to-I editing processes.
  • Findings suggest that while C-to-U editing is influenced by broader genetic control, A-to-I editing is more localized, highlighting the complexity and evolutionary significance of RNA editing across different types.
View Article and Find Full Text PDF

Retinoic acid (RA) is required for the successful differentiation and meiotic entry of germ cells in the murine testis. The availability of RA to undifferentiated germ cells begins in a variable, uneven pattern during the first few days after birth and establishes the asynchronous pattern of germ cell differentiation in adulthood. It has been shown that synchronous spermatogenesis can be induced in 2 d postpartum mice, but not in adult mice, by treating vitamin A sufficient males with RA.

View Article and Find Full Text PDF

Retinoic acid (RA) is required for germ cell differentiation, the regulation of which gives rise to a constant production of mature sperm. In testes from 3-day postpartum (dpp) RARE-hsplacZ mice, periodic regions positive for beta-galactosidase activity were observed along the length of the seminiferous tubules. Periodicity was abolished by treatment of neonates with exogenous RA at 2 dpp.

View Article and Find Full Text PDF

The tissues of the male reproductive tract are characterized by distinct morphologies, from highly coiled to un-coiled. Global gene expression profiles of efferent ducts, epididymis, and vas deferens were generated from embryonic day 14.5 to postnatal day 1 as tissue-specific morphologies emerge.

View Article and Find Full Text PDF

Throughout the reproductive lifespan of most male mammals, sperm production is constant because of the regulated differentiation of spermatogonia. Retinoic acid (RA) and a downstream target, Stra8, are required for complete spermatogenesis. To examine the role of RA in initiating spermatogonial differentiation, a transgenic mouse model expressing beta-galactosidase under the control of an RA response element was used.

View Article and Find Full Text PDF

The role of estrogen and testosterone in the regulation of gene expression in the proximal reproductive tract is not completely understood. To address this question, mice were treated with testosterone or estradiol, and RNA from the efferent ducts and caput epididymides was processed and hybridized to Affymetrix M430 2.0 microarrays.

View Article and Find Full Text PDF