Importance: Individuals in the presymptomatic stage of Alzheimer disease (AD) are increasingly being targeted for AD secondary prevention trials. How early during the normal life span underlying AD pathologies begin to develop, their patterns of change over time, and their relationship with future cognitive decline remain to be determined.
Objective: To characterize the within-person trajectories of cerebrospinal fluid (CSF) biomarkers of AD over time and their association with changes in brain amyloid deposition and cognitive decline in cognitively normal middle-aged individuals.
Primary Objective: Visinin-like protein-1 (VILIP-1) has shown potential utility as a biomarker for neuronal injury in cerebrospinal fluid. This study investigated serum VILIP-1 as a diagnostic and prognostic marker in sports-related concussion.
Methods: This multi-centre prospective cohort study involved the 12 teams of the professional ice hockey league in Sweden.
Context: Transforming growth factor-beta1 (TGF-B1) is a highly pleiotropic cytokine whose functions include a central role in the induction of fibrosis.
Objective: To investigate the hypothesis that elevated plasma levels of TGF-B1 are positively associated with incident heart failure (HF).
Participants And Methods: The hypotheses were tested using a two-phase case-control study design, ancillary to the Cardiovascular Health Study - a longitudinal, population-based cohort study.
Neurological outcomes of preterm infants with posthemorrhagic hydrocephalus are among the worst in newborn medicine. There remains no consensus regarding the diagnosis or treatment of posthemorrhagic hydrocephalus, and the pathological pathways leading to the adverse neurological sequelae are poorly understood. In the current study, we developed an innovative approach to simultaneously identify potential diagnostic markers of posthemorrhagic hydrocephalus and investigate novel pathways of posthemorrhagic hydrocephalus-related neurological disability.
View Article and Find Full Text PDFThrombin-activable fibrinolysis inhibitor (TAFI) is a plasma zymogen that acts as a molecular link between coagulation and fibrinolysis. Numerous single nucleotide polymorphisms (SNPs) have been identified in CPB2, the gene encoding TAFI, and are located in the 5'-flanking region, in the coding sequences, and in the 3'-untranslated region (UTR) of the CPB2 mRNA transcript. Associations between CPB2 SNPs and variation in plasma TAFI antigen concentrations have been described, but the identity of SNPs that are causally linked to this variation is not known.
View Article and Find Full Text PDF