Heterozygous mutations in the glucocerebrosidase gene (GBA) represent the strongest common genetic risk factor for Parkinson's disease (PD), the second most common neurodegenerative disorder. However, the molecular mechanisms underlying this association are still poorly understood. Here, we have analyzed ten independent induced pluripotent stem cell (iPSC) lines from three controls and three unrelated PD patients heterozygous for the GBA-N370S mutation, and identified relevant disease mechanisms.
View Article and Find Full Text PDFHuman induced pluripotent stem cells (hiPSCs) offer the potential to study otherwise inaccessible cell types. Critical to this is the directed differentiation of hiPSCs into functional cell lineages. This is of particular relevance to research into neurological disease, such as Parkinson's disease (PD), in which midbrain dopaminergic neurons degenerate during disease progression but are unobtainable until post-mortem.
View Article and Find Full Text PDFiPSCs (induced pluripotent stem cells) offer an unparalleled opportunity to generate and study physiologically relevant cell types in culture. iPSCs can be generated by reprogramming almost any somatic cell type using pluripotency factors such as Oct4, SOX2, Nanog and Klf4. By reprogramming cells from patients carrying disease-associated mutations, and subsequent differentiation into the cell type of interest, researchers now have the opportunity to study disease-specific cell types which were previously inaccessible.
View Article and Find Full Text PDFBackground: Gap junction communication has been shown in glial and neuronal cells and it is thought they mediate inter- and intra-cellular communication. Connexin 36 (Cx36) is expressed extensively in the developing brain, with levels peaking at P14 after which its levels fall and its expression becomes entirely neuronal. These and other data have led to the hypothesis that Cx36 may direct neuronal coupling and neurogenesis during development.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
February 2008
In a putative model of acute phencyclidine (PCP)-induced psychosis we evaluated effects of the drug on locomotor activity (LMA) and immediate early gene (IEG) induction in the rat using two routes of drug administration, intraperitoneal (i.p.) and subcutaneous (s.
View Article and Find Full Text PDF