Neutral models of speciation based on isolation by distance and assortative mating, termed topopatric, have shown to be successful in describing abundance distributions and species-area relationships. Previous works have considered this type of process in the context of haploid genomes. Here we discuss the implementation of two schemes of dominance to analyze the effects of diploidy: a complete dominance model in which one allele dominates over the other and a perfect codominant model in which heterozygous genotypes give rise to a third phenotype.
View Article and Find Full Text PDFThe branching of new species from an ancestral population requires the evolution of reproductive isolation between groups of individuals. Geographic separation of sub-populations by natural barriers, if sustained for sufficiently long times, may lead to the accumulation of independent genetic changes in each group and to mating incompatibilities (Mayr, 2001; Fitzpatrick et al., 2009).
View Article and Find Full Text PDFMany quantitative genetic and adaptive dynamic models suggest that disruptive selection can maintain genetic polymorphism and be the driving force causing evolutionary divergence. These models also suggest that disruptive selection arises from frequency-dependent intraspecific competition. For convenience or historical precedence, these models assume that carrying capacity and competition functions follow a Gaussian distribution.
View Article and Find Full Text PDF