Publications by authors named "Elizabeth Lowder"

Mineralization of vertebrate tissues such as bone, dentin, cementum, and calcifying tendon involves type I collagen, which has been proposed as a template for calcium and phosphate ion binding and subsequent nucleation of apatite crystals. Type I collagen thereby has been suggested to be responsible for the deposition of apatite mineral without the need for non-collagenous proteins or other extracellular matrix molecules. Based on studies in vitro, non-collagenous proteins, including osteocalcin and bone sialoprotein, are thought to mediate vertebrate mineralization associated with type I collagen.

View Article and Find Full Text PDF

Background: The effect of compression on the physis is generally defined by the Hueter-Volkmann principle, in which decreased linear growth of the physis results from increased compression. This investigation examined whether mechanically induced compression of rabbit physes causes changes in gene expression, cells, and extracellular components that promote physeal resilience and strength (type-II collagen and aggrecan) and cartilage hypertrophy (type-X collagen and matrix metalloprotease-13).

Methods: Static compressive loads (10 N or 30 N) were applied for two or six weeks across one hind limb proximal tibial physis of thirteen-week-old female New Zealand White rabbits (n = 18).

View Article and Find Full Text PDF

This study was undertaken to determine whether periosteum from different bone sources in a donor results in the same formation of bone and cartilage. In this case, periosteum obtained from the cranium and mandible (examples of tissue supporting intramembranous ossification) and the radius and ilium (examples of tissues supporting endochondral ossification) of individual calves was used to produce tissue-engineered constructs that were implanted in nude mice and then retrieved after 10 and 20 weeks. Specimens were compared in terms of their osteogenic and chondrogenic potential by radiography, histology, and gene expression levels.

View Article and Find Full Text PDF

Normal murine metapodophalangeal sesamoid bones, closely associated with tendons, were examined in terms of their structure and mineralization with reference to their potential function following crystal deposition. This study utilized radiography, whole mount staining, histology, and conventional electron microscopy to establish a maturation timeline of mineral formation in 1- to 6-week-old metapodophalangeal sesamoids from CD-1 mice. An intimate cellular and structural relationship was documented in more detail than previously described between the sesamoid bone, tendon, and fibrocartilage enthesis at the metapodophalangeal joint.

View Article and Find Full Text PDF

The field of tissue engineering remains one of the least explored areas of current meniscal research but holds great promise. In this investigation, meniscal fibrochondrocytes were isolated from fresh human meniscal tissue and seeded onto synthetic polyglycolic acid (PGA) scaffolds. Constructs were implanted into the dorsal subcutaneous space of athymic nude mice.

View Article and Find Full Text PDF

Human middle phalanges were tissue-engineered with midshaft scaffolds of poly(L-lactide-epsilon-caprolactone) [P(LA-CL)], hydroxyapatite-P(LA-CL), or beta-tricalcium phosphate-P(LA-CL) and end plate scaffolds of bovine chondrocyte-seeded polyglycolic acid. Midshafts were either wrapped with bovine periosteum or left uncovered. Constructs implanted in nude mice for up to 20 weeks were examined for cartilage and bone development as well as gene expression and protein secretion, which are important in extracellular matrix (ECM) formation and mineralization.

View Article and Find Full Text PDF

Background: Slipped capital femoral epiphysis is a poorly understood condition affecting adolescents. Prior studies have suggested that the etiology may be related to abnormal collagen in the growth plate cartilage, but we are not aware of any investigations analyzing collagen or other structural proteins on a molecular level in the affected tissue. This study was performed to evaluate expression of mRNA for key structural molecules in growth plate chondrocytes of patients with slipped capital femoral epiphysis.

View Article and Find Full Text PDF

This study examines the tissue engineering of a human ear model through use of bovine chondrocytes isolated from four different cartilaginous sites (nasoseptal, articular, costal, and auricular) and seeded onto biodegradable poly(l-lactic acid) and poly(L-lactide-epsilon-caprolactone) (50 : 50) polymer ear-shaped scaffolds. After implantation in athymic mice for up to 40 weeks, cell/scaffold constructs were harvested and analyzed in terms of size, shape, histology, and gene expression. Gross morphology revealed that all the tissue-engineered cartilages retained the initial human auricular shape through 40 weeks of implantation.

View Article and Find Full Text PDF

Tissue-engineered middle phalanx constructs of human digits were investigated to determine whether periosteum wrapped partly about model midshafts mediated cartilage growth plate formation. Models were fabricated by suturing ends of polymer midshafts in a human middle phalanx shape with polymer sheets seeded with heterogeneous chondrocyte populations from bovine articular cartilage. Half of each midshaft length was wrapped with bovine periosteum.

View Article and Find Full Text PDF

Gene expression levels for type II collagen and aggrecan have been determined as potential measures and disease markers of human osteoarthritis in patients undergoing total knee arthroplasty. In this regard, specimens of affected articular cartilage obtained intraoperatively at the time of surgery were placed in RNAlater(TM) to maintain RNA integrity and subsequently frozen-sectioned. Individual or small numbers of chondrocytes were isolated by laser capture microdissection and their total RNA was extracted and analyzed by quantitative reverse transcription-polymerase chain reaction.

View Article and Find Full Text PDF

This study compares bovine chondrocytes harvested from four different animal locations--nasoseptal, articular, costal, and auricular--for tissue-engineered cartilage modeling. While the work serves as a preliminary investigation for fabricating a human ear model, the results are important to tissue- engineered cartilage in general. Chondrocytes were cultured and examined to determine relative cell proliferation rates, type II collagen and aggrecan gene expression, and extracellular matrix production.

View Article and Find Full Text PDF